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Combining Food Frequency and Survey Data to Quantify
Long-Term Dietary Exposure: A Methyl Mercury Case Study



Nga L. Tran,1∗ Leila Barraj,1 Kim Smith,1 Annabelle Javier,1 and Thomas A. Burke 2



Twenty-four-hour recall data from the Continuing Survey of Food Intake by Individuals
(CSFII) are frequently used to estimate dietary exposure for risk assessment. Food frequency
questionnaires are traditional instruments of epidemiological research; however, their applica-
tion in dietary exposure and risk assessment has been limited. This article presents a probabilis-
tic method of bridging the National Health and Nutrition Examination Survey (NHANES)
food frequency and the CSFII data to estimate longitudinal (usual) intake, using a case study
of seafood mercury exposures for two population subgroups (females 16 to 49 years and chil-
dren 1 to 5 years). Two hundred forty-nine CSFII food codes were mapped into 28 NHANES
fish/shellfish categories. FDA and state/local seafood mercury data were used. A uniform
distribution with minimum and maximum blood-diet ratios of 0.66 to 1.07 was assumed. A
probabilistic assessment was conducted to estimate distributions of individual 30-day average
daily fish/shellfish intakes, methyl mercury exposure, and blood levels. The upper percentile
estimates of fish and shellfish intakes based on the 30-day daily averages were lower than
those based on two- and three-day daily averages. These results support previous findings that
distributions of “usual” intakes based on a small number of consumption days provide over-
estimates in the upper percentiles. About 10% of the females (16 to 49 years) and children (1
to 5 years) may be exposed to mercury levels above the EPA’s RfD. The predicted 75th and
90th percentile blood mercury levels for the females in the 16-to-49-year group were similar to
those reported by NHANES. The predicted 90th percentile blood mercury levels for children
in the 1-to-5-year subgroup was similar to NHANES and the 75th percentile estimates were
slightly above the NHANES.



KEY WORDS: CSFII; dietary exposure; fish/shellfish methyl mercury; food frequency; NHANES; prob-
abilistic assessment; usual intakes



1. INTRODUCTION



Dietary intake of a contaminant of concern (E =
mg/day) is often indirectly estimated based on two
parameters: (1) the concentration of the contami-
nant in the food at the time of consumption (Cf =
mg/kgfood) and (2) the amount of the food consumed
(L = kgfood/day). To account for dietary intake of a
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contaminant from consumption of multiple foods, Eq-
uation (1) is applied.(1) Under this general framework,
dietary exposure can be estimated as either the prod-
uct of an average consumption of a food and an aver-
age contaminant (i.e., residue) concentration in or on
that food, or as the product of the probability distri-
butions of food intakes and residue concentrations:



Et =
∑



i



(C f )i (L)i (1)



where i is number of different food types consumed;
Cf is residue in foods (mg/kg); and L is the amount of
food consumed (kg/day).
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While there are challenges associated with sam-
pling and measuring residues in foods, surveying pop-
ulation food consumption patterns presents other dif-
ficulties since human diets vary greatly from individ-
ual to individual and from day to day. Many factors
influence individual and family choices to acquire and
consume foods, including household income, price of
foods, personal factors (such as age, sex, ethnic group,
employment status, education), physiological status
(such as pregnancy), and environmental factors such
as advertising or convenience.(2,3) To estimate food
consumption, surveys are usually conducted to col-
lect individual intake information that may be cur-
rent or from the immediate, recent, or distant past.
There are various kinds of surveys including quantita-
tive types (i.e., food records and 24-hour recalls), food
frequency questionnaires, and dietary histories.(4)



Intake distributions for many dietary components
are skewed to the right.(5,6) The usual dietary intake
of a food is the long-run average daily intake of that
food, which is unobservable.(7,8) When long-term pat-
terns of consumption (subchronic and chronic expo-
sures) are of concern rather than consumption lev-
els on any given day (acute exposure), usual intakes
are of interest. While the 24-hour recall has been the
most common method used to collect food intake in-
formation,(4) it is the least ideal for estimating usual
and longer-term average daily food intakes. This is
because there are considerable variations in intake
between days and it is usually impossible to identify
a representative day.(9) These large variations in day-
to-day intake of food within individuals (i.e., intra-
individual variation) are often greater than inter-
individual variation.(3) Ratios of the two, however,
also differ among foods and food components, among
age, sex, and socioeconomic groups, and within and
between dietary intake instruments.(6,10,11)



Also of issue is the number of days for which di-
etary recalls or records are obtained. It has been rec-
ommended that greater restrictions be placed on the
interpretation of data obtained for a single day than
on data obtained over multiple days.(6,10) Single-day
intake data usually result in a distribution that is flatter
and wider than the true distribution of usual intakes of
individuals in the population. Thus, the prevalence of
high or low intakes is overestimated.(11) One-day in-
take data for each individual are not sufficient for the
estimation of usual food intake distributions because
the data do not provide a means for distinguishing the
intra- (within) from the interindividual (among) vari-
ances.(3) Multiple days of intake data could provide a



means of reducing the effects of intra-individual vari-
ation on estimates of usual food intakes.(11) Overesti-
mation has been reported to increase as the number of
days of intakes observed for an individual declines.(7,8)



It is difficult to accurately estimate chronic dietary
exposure because of the general lack of long-term
food consumption data. Because of respondent bur-
dens and costs, most surveys using food records or re-
call methodology can capture only a few days of con-
sumption for the same individual, particularly when
extensive details (e.g., food quantity, source, ingredi-
ents, and preparation method) are collected. On the
other hand, food frequency surveys generally capture
information about eating patterns over a longer pe-
riod of time. However, the information collected is not
as detailed as that collected by food recall or records
surveys. While data from food frequency question-
naires have been used extensively to assess exposure
in epidemiological studies, their utility in quantitative
exposure assessment for risk characterization has not
been thoroughly explored. Quantitative dietary expo-
sure assessments for risk characterization have been
based mainly on information collected from quantita-
tive food surveys such as the 24-hour recall and food
records in the USDA surveys. This separation exem-
plifies the disconnect between the information needs
in risk assessment and the tools/information available
from epidemiology.(12) A number of methods have
been described to generate usual/long-term intakes
from 24-hour recall.(8,13) Nevertheless, none of these
methods exploited the available empirical data from
the frequency surveys, even though the complemen-
tary nature of the food frequency and quantitative
surveys had been previously noted.(11)



This article presents an approach to capitalize
on the complementary nature of data obtained from
food frequency and quantitative surveys (such as the
24-hour recall) to refine estimates of chronic average
daily intake. Seafood intake and mercury exposure is
used as a case study to demonstrate the probabilis-
tic method of combining dietary recall data, specif-
ically data from the Continuing Survey of Food In-
take by Individuals (CSFII)(15) and food frequency
data, specifically data from the National Health and
Nutrition Examination Survey (NHANES).(14) Two
population subgroups are the focus of this case study:
females in the 16-to-49-year group and children in the
1-to-5-year group. These subpopulations were chosen
to allow direct comparison of the blood mercury val-
ues predicted by the dietary model with the NHANES
reported levels.
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2. DATABASES AND METHODS



2.1. Consumption Data



Two types of consumption survey data were uti-
lized to develop 30-day average daily intakes of
fish/shellfish.



2.1.1. NHANES (1999–2000) Food
Frequency Data(14)



The National Health and Nutrition Examination
Survey (NHANES) is an annual, cross-sectional sur-
vey that is based on a complex multistage cluster sur-
vey design to collect information about the health
and diet of the civilian, noninstitutionalized popula-
tions of the United States. NHANES samples about
5,000 people every year through a Mobile Exami-
nation Center, which travels around the country to
randomly selected households, conducting both in-
terviews and physical exams. The surveys conduct
both in-home interviews and physical examinations
focusing on several population groups and health
topics. Some of the population groups include gen-
eral U.S. population, adults aged 18 to 79 years, in-
fants, children aged 6 to 11 years, youths aged 12
to 17 years, adolescents aged 15 to 19 years, preg-
nant women, African Americans, and Hispanic Amer-
icans. Some of the health topics include risk factors
(i.e., smoking, alcohol consumption, sexual practices,
drug use, physical fitness, etc.), reproductive health,
cardiovascular disease, mental health, nutrition, oral
health, and vision. The nutrition assessment tools used
in the survey were designed to provide monitoring
data enabling the assessment of the nutritional sta-
tus of the population over time, reference data for
nutritional biochemistries, anthropometric data and
nutrient intakes, and data for research to examine
relationships between diet and health. Both food fre-
quency and one 24-hour recall methods were utilized
in the seafood component of the 1999–2000 NHANES
survey.



The most recent public release of NHANES
(1999–2000) provides data on the frequency of
seafood consumption for 31 categories of fish/shellfish
during a 30-day period. The list of the 31 NHANES
fish/shellfish categories is provided in Table I. The
table also includes the total number of consum-
ing occasions reported by children aged 1 to 5
years and women aged 16 to 49 years during a 30-
day period for each of the NHANES fish/shellfish
categories.



Table I. 31 NHANES Fish/Shellfish Categories and Total
(Unweighted) Number of Fish/Shellfish Consuming Occasions



Reported in Past 30 days—1999–2000 Survey



Total Fish/Shellfish Consuming
Occasionsa in Past 30 days



Women 16 to Children 1 to
NHANES Category 49 years 5 years



Fish
Breaded fish 413 380
Bass 25 6
Catfish 277 106
Cod 108 22
Flatfish 100 66
Haddock 38 21
Mackerel 21 14
Perch 47 29
Pike 1 2
Pollock 67 9
Porgy 9 2
Salmon 375 97
Sardines 57 30
Seabass 15 2
Shark 4 1
Swordfish 29 0
Trout 51 14
Tuna 1572 586
Walleye 11 3
Other fish 420 214
Other unknown fish 127 56



Shellfish
Clams 124 16
Crabs 364 68
Crayfish 38 3
Lobsters 133 12
Mussels 52 2
Oysters 118 13
Scallops 112 17
Shrimp 1402 387
Other shellfish 106 14
Other unknown shellfish 13 7



aConsuming occasions: number of times subject reported eating
specific fish during last 30 days.



Food frequency information was collected from
1,085 children 1 to 5 years old and 1,944 women 16
to 49 years old. A subset of these participants re-
ported consuming fish/shellfish at least once during
the past 30 days, defined in this article as “fish/shellfish
consumers.” Table II provides a summary of the
unweighted and weighted total sample sizes for
these children and women subpopulations. Sampling
weights were assigned to NHANES participants to
adjust, among others, for differential probabilities of
selection and nonresponse. These weights are used in
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Table II. 1999–2000 NHANES Sample Size for Children 1 to 5 Years and Women 16 to 49 Years



Unweighted Weighteda



Population Total Fish Consumersb (%) Shellfish Consumersb (%) Total Fish Consumersb (%) Shellfish Consumersb (%)



Children 1,085 520 (48) 237 (22) 19,749,260 10,294,562 (52) 3,535,913 (18)
1 to 5



Women 1,944 1,066 (55) 819 (42) 70,865,511 45,157,283 (64) 34,916,762 (49)
16 to 49



aWeighted samples are sampling weights assigned to NHANES participants (by NHANES) to adjust, among others, for differential
probabilities of selection and nonresponse.
bFish/shellfish consumers are individuals reporting consumption of any NHANES fish/shellfish categories at least once during the past 30 days.



all analyses to adjust for the differential probabilities
of selection. The probability mass for a weighted con-
sumption value is defined as follows:



P(yi ) = wi
n∑
i



i=1



wi



where yi is the ith observation of weighted consump-
tion, and wi are sample weights associated with the
ith observation.



2.1.2. 1994–1996 and 1998 CSFII Data(15)



Consumption data from the U.S. Department
of Agriculture’s (USDA) CSFII from 1994 through
1996 and the 1998 Supplemental Children’s Survey
data (USDA, 1995, 1996, 1998) provides the most
recent two nonconsecutive days of seafood intake
(g/kg BW/serving or eating occasion). Although there
are 24-hour dietary recall data from NHANES 1999–
2000, these were not used in this analysis because the
sample size was smaller than the CSFII and the users
based on frequency did not necessarily consume the
food in the past 24 hours. USDA’s survey sample was
drawn from all private households and designed to
provide a multistage stratified area probability sample
representative of the 48 contiguous states. The stratifi-
cation plan took into account geographic location, de-
gree of urbanization, and socioeconomic status. The
48 states were grouped into nine census geographic
divisions; then all land areas within the divisions were
divided into three urbanization classifications: cen-
tral city, suburban, and nonmetropolitan. Each suc-
cessive sampling stage selected increasingly smaller,
more specific locations.



Although the 1989–1991 CSFII included food
consumption diaries on three nonconsecutive days,
which might better support estimation of chronic daily



intake, the rapidly evolving trends in diet and the
pace of introduction of new foods call into ques-
tion the representativeness of the older data for to-
day’s consumers. Table III provides a comparison of
the average, 10th, and 95th percentile estimates of
the amounts fish and shellfish consumed per eating
occasion (g/eating occasion) for women aged 16 to
49 years and children aged 1 to 5 years. While the av-
erage amounts of fish consumed per eating occasion
for both the females and children are similar between
the two surveys, the 95th percentile estimate of the
amount of fish consumed per eating occasion for the
female group has increased from 290.8 g/eating occa-
sion in the 1989–1991 CSFII to 315.2 g/eating occasion
in the 1994–1996, 1998 CSFII. The average amount of
shellfish consumed per eating occasion for the female
group has decreased from 98.9 g/eating occasion to
89.5 g/eating occasion; however, the 95th percentile
estimate has increased from 252.9 g/eating occasion
to 277.5 g/eating occasion between the two surveys.
More noticeable is the increase in the amount of



Table III. Comparison of Average Fish/Shellfish Serving Sizes
Between 1989–1991 and 1994–1998 CSFII Surveys (g/eating
occasion)—Women 16 to 49 Years and Children 1 to 5 Years



All Fish All Shellfish
(g/eating occasion) (g/eating occasion)



Population 1989–1991 1994–1998 1989–1991 1994–1998
Subgroup CSFII CSFII CSFII CSFII



Females 16 to 49
10th 36.7 33.6 25.7 16.4
Meana 114.2 115.3 98.9 89.5
95th 290.8 315.2 252.9 277.5



Children 1 to 5
10th 16.9 16.4 4.4 9.3
Meana 65.5 68.5 26.2 46.3
95th 163.5 169.2 84.3 144.2



aArithmetic mean.
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shellfish consumed per eating occasion for the chil-
dren in the 1-to-5-year group: the average amounts
per eating occasion has increased from 26.2 g/eating
occasion in the 1989–1991 survey to 46.3 g/eating
occasion in the latest survey (a 77% increase); and
the 95th percentile estimate has increased from 84.3
g/eating occasion to 144.2 g/per eating occasion (a
71% increase). Given the changes in the amounts of
fish/shellfish consumed per eating occasion from the
1989–1991 to 1994–1996/1998 CSFII, data from the
latest survey were utilized in this study to capture the
most current consumption pattern.



2.2. Estimating Usual Fish/Shellfish Intakes



2.2.1. Linking CSFII Foods to NHANES
Fish/Shellfish Categories (Fj)



There are 249 eight-digit CSFII food codes for
fish and shellfish (reported “as eaten”) in the CSFII.
Of these, 245 were mapped to 28 of the 31 NHANES
broad fish and shellfish categories (Fj). For example:



1. The following CSFII food codes were mapped
into the NHANES breaded fish category:
NFCS Code Description
26100130 Fish, NS as to type, breaded or



battered, baked
26100140 Fish, NS as to type, floured or



breaded, fried
26100150 Fish, NS as to type, battered, fried
26100230 Fish stick/fillet, NS type, breaded/



battered, baked
26100240 Fish stick/fillet, NS type, floured/



breaded, fried
26100250 Fish stick/fillet, NS type, battered,



fried



2. The following CSFII food codes were mapped
into the NHANES trout category:
NFCS Code Description
26151110 Trout, cooked, NS as to cooking



method
26151120 Trout, baked or broiled
26151130 Trout, breaded or battered, baked
26151140 Trout, floured or breaded, fried
26151150 Trout, battered, fried
26151160 Trout, steamed or poached
26151190 Trout, smoked



When there is no equivalent NHANES seafood
group, the CSFII fish code was typically assigned to
the NHANES “other fish” group with the exception
of the CSFII food codes for roe, caviar, and frog



Table IV. Matching of CSFII Food Codes to
NHANES Categories



NHANES Fish/Shellfish Number of CSFII Food
Category Codes Included



Fish
Breaded fish 6
Bass NI
Catfish 6
Cod 15
Flatfish 8
Haddock 7
Mackerel 9
Perch 13
Pike 5
Pollock NI
Porgy 7
Salmon 9
Sardines 4
Sea bass 6
Shark 3
Swordfish 4
Trout 7
Tuna 10
Walleye NI
Other fish 53
Unknown fish 9



Shellfish
Other shellfish 19
Clams 8
Crabs 5
Crayfish 2
Lobsters 7
Mussels 3
Oysters 8
Scallops 5
Shrimp 6



legs. These CSFII food codes were not included in
this analysis. The three NHANES fish groups—bass,
pollock, and walleye—were excluded because the
CSFII data set did not have food codes representing
these food types. Table IV summarizes all NHANES
fish/shellfish categories and the number of CSFII
codes that corresponded to these categories, hence
included in the analysis.



2.2.2. Estimating Fish/Shellfish Intake per Eating
Occasion (Aj)



Once the grouping of CSFII food codes into
NHANES fish categories were finalized, amounts
consumed by eating occasion for each NHANES fish
category were calculated and a weighted distribution
of amounts consumed per eating occasion (Aj) was
generated from the 24-hour intake records in the
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CSFII database using the Novigen’s Foods and
Residue Evaluation Program (FARETM).(16) FARE
is a research and proprietary software that was devel-
oped to facilitate the mining and statistical analysis
of the thousands of individual intake records in the
USDA 1994–1996/1998 CSFII database. The amount
consumed per eating occasion analysis was conducted
for the women in the 16-to-49- and children in the 1-
to-5-year age groups.



When the number of individuals who reported
consumption of a particular NHANES fish category
in the 1994–1996/1998 CSFII database was very small
(i.e., 10 or fewer) such that a robust distribution anal-
ysis could not be carried out, a distribution of the
amounts consumed per eating occasion from another
NHANES fish group was used as substitute. The sub-
stitution was made with a NHANES fish group that
had a similar range of intake. For example, women
aged 16 to 49 years reported consumption of 0.71 to 4.3
g/kg/eating occasion of sea bass; however, only four
people are represented in this range. To create a larger
but more robust distribution of amounts consumed
per eating occasion, the salmon intake distribution,
which had similar ranges of 0.2 to 6.25 g/kg/eating
occasion, was used. The salmon intake distribution
was derived from reported consumption of salmon by
32 women aged 16–49 years in the 1994–1996 CSFII
(n = 32 unweighted, 923,220 weighted).



2.2.3. Estimating Long-Term (30-Day Average)
Daily Fish/Shellfish Intake



A probabilistic assessment with Crystal Ball�(17)



was conducted to estimate the distribution of indi-
vidual 30-day average daily fish/shellfish intakes.
Specifically, Crystal Ball� was used to combine ran-
domly sampled individual records of fish/shellfish 30-
day frequency of consumption from the NHANES
database with amounts consumed at each eating oc-
casion (grams per kg of body weight per eating occa-
sion) randomly sampled from the CSFII distribution
of intakes (Aj, see step 2). The samples were drawn
independently from the two sets of distributions using
Latin Hypercube sampling. Thus, it was assumed that
the amount consumed per eating occasion is indepen-
dent of frequency of consumption, and no attempt was
made to correlate amounts consumed with frequency
of consumption.



In combining the two sets of distributions
(NHANES and CSFII), the within-person correla-
tions (if any) are maintained in the frequency of con-
sumption. The following algorithm was applied:



1. Select a person (i) from the NHANES fre-
quency distributions.



2. Identify their frequency of consumption of
the various NHANES fish/shellfish categories
(Fij) in a 30-day period.



3. For each NHANES fish/shellfish category
(Fj), select Fij different eating occasion
amounts from the corresponding amounts Aj



(Aj,Fij). Note that, to minimize the need to
create a huge amount of “input assumptions,”
65,500 Aj values were first generated from the
distributions of CSFII intakes using Crystal
Ball�. These 65,500 CSFII intake values were
saved in the order in which they were gen-
erated (that is, they were not rank-ordered).
From these 65,500 values, random Aj,Fij values
were generated.



4. The 30-day total amount of fish/shellfish (j)
consumed by individual (i) was derived by
summing the Aj,Fij



Tij = ∑
(Aj,Fij ).



Thus for each selected NHANES individual, the
algorithm would produce a total of fish/shellfish con-
sumed over the 30 days (Tij) and the 30-day average
daily intake is then derived by dividing Tij by 30. The
sampling process was repeated 10,000 times for each
age and sex group considered.



2.2.4. Per Capita Analysis



As previously described, “fish/shellfish con-
sumers” are the NHANES participants with reported
fish/shellfish consumption at least once during the
past 30 days. The per capita distribution of consump-
tion is developed by combining weighted number of
nonconsumers (intake values assigned as zeros) with
weighted number of consumers (with 30-day average
daily intake values based on the procedure described
above). Total weighted sample size, fish and shellfish
consumers are summarized in Table II.



2.3. Estimating Mercury Exposure from
Seafood Intakes



For each individual (i) with reported consump-
tion in the NHANES data set, methyl mercury ex-
posure from each eating occasion was derived by
combining the fish/shellfish intake that was randomly
generated in Section 2.2 (AjFij ) with a mercury level
(ppm) in that fish/shellfish (XFj). Mercury levels in
fish/shellfish were compiled from various sources,
with the main source being the FDA.(18) Table V
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Table V. Mercury Levels in Fish and Shellfish



Mercury Residue (ppm)
NHANES Fish/
Shellfish Categories Average Ranges References 18–21



Clams ND ND FDA, May 2001
Crabs 0.18 0.02–0.48 FDA, May 2001
Crayfish 0.078 0.058–0.102 Washington State Department of Ecology,



2001. Average and ranges based on
3 reported median values.19



Lobsters 0.31 0.05–1.31 FDA, May 2001
Mussels ND ND FDA, May 2001 (clams)
Oysters ND ND–0.25 FDA, May 2001
Scallops 0.05 ND–0.22 FDA, May 2001
Shrimp ND ND FDA, May 2001
Breaded fish 0.04 ND–0.18 FDA, May 2001 (flounder)
Catfish 0.07 ND–0.31 FDA, May 2001
Cod 0.19 ND–0.33 FDA, May 2001
Flatfish (flounder) 0.04 ND–0.18 FDA, May 2001
Haddock 0.17 0.07–0.37 FDA, May 2001
Mackerel 0.73 0.30–1.67 FDA, May 2001
Perch 0.11 0.10–0.31 FDA, May 2001
Pike 0.76 0.38–1.26 MI DEQ. 2001. Average and ranges based



on 4 reported median values.20



Porgy 0.5–0.6 Hall, Zook, and Meaburn, 1978.21



Salmon ND ND–0.18 FDA, May 2001
Seabass 0.49 0.10–0.91 FDA, May 2001
Shark 0.96 0.05–4.54 FDA, May 2001
Swordfish 1 0.10–3.22 FDA, May 2001
Tuna (canned) 0.17 ND–0.75 FDA, May 2001
Trout 0.42 1.22 (max) FDA, May 2001
Other fish (croaker) 0.28 0.18–0.41 FDA, May 2001
Other unknown fish 0.04 ND–0.18 FDA, May 2001 (flounder)



ND = Nondetected.



summarizes the available seafood mercury monitor-
ing data that were used in this analysis. Due to the
limited and fairly uncertain monitoring data (only the
mean, minimum, and maximum values were avail-
able) the BetaPert distributions were used to describe
these inputs. Since contamination distributions are
typically skewed, the BetaPert was chosen over the
triangular distribution to maintain the mean value.
Reported “nondetects” were assigned “0” values as
information on limit of detection was not readily avail-
able from the reference sources.



Methyl mercury exposure from all fish/shellfish
consuming occasions during the NHANES 30-day
frequency period are summed and then divided by
30 days to derive the 30-day daily average dietary mer-
cury exposure (Eij).



Ei j =
∑



(Aj Fi j × XF j )/30



2.4. Converting Dietary Intake
to Blood Level



In a number of studies, the correlation between
dietary exposure and blood mercury levels have been
reported as poor (r ≤ 0.3).(13) The lack of correla-
tion has been attributed to the fact that blood sam-
ples are a short-term measure and thus do not reflect
longer-term dietary exposure.(13,22) In a recently pub-
lished study by Carrington and Bolger (2002),(13) the
Sherlock et al. (1984) study was deemed to be
the most suitable for establishing equilibrium val-
ues for a chronic diet-blood relationship. An aver-
age blood-diet ratio of 0.80 was reported by Sher-
lock et al. (1984),(22) meaning that a daily intake of
1 µg methylmercury would at equilibrium produce a
blood mercury concentration of 0.8 µg/L. A uniform
distribution with parameter estimates based on Sher-
lock’s minimum and maximum blood-diet ratios of
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Table VI. Comparison of 2-Day, 3-Day and 30-Day Average Daily Fish and Shellfish Intake for Females 16 to 49 Years



All Fish Daily Intake (g/kg BW/day) per Capita All Shellfish Intake (g/kg/day) per Capita



2-Day Average 3-Day Average 30-Day Average 2-Day Average 3-Day Average 30-Day Average
Percentiles (1994–1998)a (1989–1991)a (1999–2000) (1994–1998)a (1989–1991)a (1999–2000)



5th 0 0 0 0 0 0
25th 0 0 0 0 0 0
50th 0 0 0.063 0 0 0.007
75th 0 0 0.181 0 0 0.075
90th 0.151 0.622 0.352 0 0 0.176
95th 0.799 1.003 0.500 0 0.045 0.290
99th 1.969 2.057 0.822 1.086 0.992 0.807
99.5th 3.060 2.468 0.949 1.581 1.354 0.987
99.9th 4.180 3.400 2.125 3.093 1.867 2.220
Max 9.827 5.958 3.003 12.030 5.247 2.587
Average 0.101 0.165 0.130 0.039 0.031 0.070



aEstimates are based on fish dishes that are mostly fish and do not include mixed dishes.



0.66 to 1.07 were assumed in the probabilistic conver-
sion of dietary mercury intake (Eij) to blood level in
this analysis.



3. RESULTS



3.1. Usual Intake of Fish and Shellfish



Tables VI and VII provide the weighted per-
centile estimates of the 30-day average daily intakes of
all fish and shellfish (g/kg-BW/day) for females in the
16-to-49-year and children in the 1-to-5-year groups,
respectively. For comparative purpose, the two-day
average daily intake from the 1994–1996/1998 CSFII
survey and the three-day average daily intake from



Table VII. Comparison of 2-Day, 3-Day and 30-Day Average Daily Fish and Shellfish Intake for Children 1 to 5 Years



All Fish Daily Intake (g/kg BW/day) per Capita All Shellfish Intake (g/kg/day) per Capita



2-Day Average 3-Day Average 30-Day Average 2-Day Average 3-Day Average 30-Day Average
Percentiles (1994–1998)a (1989–1991)a (1999–2000) (1994–1998)a (1989–1991)a (1999–2000)



5th 0 0 0 0 0 0
25th 0 0 0 0 0 0
50th 0 0 0.082 0 0 0
75th 0 0 0.322 0 0 0
90th 0 1.287 0.633 0 0 0.114
95th 1.791 2.054 0.921 0 0 0.234
99th 4.475 3.735 1.768 0.952 0.267 0.550
99.5th 6.092 4.296 2.097 1.743 0.671 0.702
99.9th 9.763 5.377 3.228 5.717 2.282 1.345
Max 23.100 6.914 4.032 8.335 2.794 2.556
Average 0.228 0.31 0.228 0.031 0.012 0.036



aEstimates are based on fish dishes that are mostly fish and do not include mixed dishes.



the 1989–1991 CSFII survey are also presented in
Tables VI and VII.



For both the females in the 16-to-49-year and chil-
dren in the 1-to-5-year groups, distributions of usual
(chronic) intakes of fish and shellfish are much less
rightly skewed when based on the 30-day average
than when based on two-day or three-day averages.
The upper percentile estimates (i.e., above the 90th
percentiles) based on the 30-day daily averages are
generally lower than those based on two- and three-
day daily averages. The number of nonusers also de-
creased with the 30-day daily average, i.e., lower per-
centile estimates based on the 30-day daily averages
are generally higher than those based on two- and
three-day daily averages. (see Fig. 1).
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Fig. 1. Comparison of usual fish and shellfish intakes based on two-day, three-day and 30-day average.



3.2. Dietary Mercury Exposure



Weighted percentile and mean estimates of mer-
cury exposure (in µg/kg/day) for the women in the
16-to-49-year and children in the 1-to-5-year groups
based on the 30-day average daily intake of fish and
shellfish (per capita) are summarized in Table VIII.
Based on this analysis, approximately 10% of the U.S.
women in the 16-to-49-year and children in the 1-to-
5-year groups are being exposed to methyl mercury
from eating fish/shellfish at levels exceeding the EPA’s
reference dose (0.1 µg/kg/day).(23)



3.3. Predicted Mercury Blood Level and Validation
with 1999 NHANES Biomonitoring Data



Weighted percentile estimates of blood mercury
levels (µg/L) predicted based on the 30-day average



daily intake of fish/shellfish for females in the 16-to-
49-year and children in the 1-to-5-year groups are pre-
sented in Table IX. The 10th, 25th, 50th, 75th, and 90th
percentile estimates of blood mercury levels in similar
population subgroups from the 1999 National Health
and Nutrition Examination Survey (NHANES 1999)
are also presented in Table IX for comparison. The
NHANES 1999 blood mercury data were obtained
from the CDC-MMWR Weekly Report.(24)



For the women in the 16-to-49-year group, the
predicted mercury blood levels based on the 30-day
average daily intake of fish/shellfish were not signifi-
cantly different from the NHANES 1999 blood mer-
cury levels at the 75th and 90th percentiles. These
values fall within the 95% confidence intervals (CI)
of the NHANES values. However, at the lower per-
centiles (10th, 25th, and 50th) the model-predicted
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Table VIII. Dietary Mercury Exposure (µg/kg/day)



Percentiles Women 16–49 Children 1–5



5th 0 0
25th 0 0
50th 0.01 0.01
75th 0.05 0.07
90th 0.12a 0.18a



95th 0.20a 0.27a



99th 0.43a 0.55a



99.5th 0.53a 0.71a



99.9th 0.70a 1.08a



Average 0.05 0.11a



aLevel > RfD (0.1 µg/kg/day).



values are below NHANES (below the lower 95% CI
of the NHANES values.)



For the children in the 1-to-5-year group, the
model-predicted 90th percentile estimate of blood
mercury is similar to NHANES (within the 95% CI of
the NHANES values,) the predicted 75th percentile
estimate is slightly higher than that of NHANES
(slightly above the upper 95% CI of the NHANES
values). Similar to the women in the 16-to-49-year
group, for the 10th, 25th, and the 50th percentiles the
model-predicted values are below the NHANES lev-
els (below the lower 95% CI of the NHANES values).



4. DISCUSSION



Indirect methods of assessment of dietary expo-
sure based on the simple model of combining the
amount of a food consumed and the level of contam-
inant in that specific food is an efficient and scientif-
ically acceptable method to characterize dietary ex-



Table IX. Predicted Versus Measured NHANES Blood Mercury Levels (µg/L)



Women 16 to 49 Children 1 to 5



Predicted Blood NHANES Blood Predicted Blood NHANES Blood
Percentiles Level (µg/L) Level (µg/L) Level µg/L) Level (µg/L)



5th 0 Not reported 0 Not reported
10th 0 0.2 (0.1, 0.3) 0 <LOD
25th 0 0.5 (0.4, 0.7) 0 <LOD
50th 0.73 1.2 (0.8, 1.6) 0.12 0.2 (0.2, 0.3)
75th 2.89 2.7 (1.8, 4.5) 0.91 0.5 (0.4, 0.8)
90th 6.91 6.2 (4.7, 7.9) 2.46 1.4 (0.7, 4.8)
95th 11.03 Not reported 3.94 Not reported
99th 24.41 Not reported 7.74 Not reported
99.5th 30.25 Not reported 10.11 Not reported
99.9th 39.47 Not reported 17.13 Not reported
Max 82.73 Not reported 31.82 Not reported
Average 2.81 Not reported 1.52 Not reported



posure and risks. As with any models, the validity of
the predicted exposure estimates based on this simple
model construct is dependent upon the consumption
and residue inputs. The empirical data that are typi-
cally used to support the specification of the consump-
tion input, such as the CSFII, are based on one, two, or
three days of food intake. The long-run average daily
(or “usual”) intake of a food cannot be observed in
these short-term cross-sectional surveys.(7,8) Further-
more, input distributions that are generated based on
these survey results tend to be rightly skewed and
could overestimate long-run food intakes in the up-
per percentile ranges.(5,6) Although food frequency
surveys, used in epidemiological research, are typi-
cally designed to ascertain typical eating patterns over
a longer period of time, they usually lack the quanti-
tative measure of the amount of foods consumed that
are needed to quantify exposure and risks.



The approach of probabilistically combining the
NHANES food frequency with the quantitative esti-
mates from CSFII described in this article is intended
to produce a quantitative estimate of intake for a
larger number of days than typically available from
food consumption surveys. This method was applied
to empirically derive longitudinal estimates (30-day
daily average) of fish and shellfish intake for females
in the 16-to-49-year and children in the 1-to-5-year
groups. The results support the prevailing theory that
distribution of usual intakes based on a large number
of individual observation days would minimize the
potential for overestimation at the upper percentiles
that could result from using data collected over a
limited number of days. Also, as expected, estimates
of “usual” intakes in the lower percentile ranges are
improved, i.e., the number of “nonusers (“0” intakes)
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is reduced. These trends were observed when com-
paring weighted percentile estimates of fish and shell-
fish intakes for women in the 16-to-49-year (see Table
VI) and for children in the 1-to-5-year group (see Ta-
ble VII) between two-day, three-day, and 30-day daily
averages.



In this article, information on mercury levels in
fish and shellfish was limited. The primary source of
data was the FDA Center for Food Safety and Ap-
plied Nutrition published values.(18) For species that
do not have FDA residue data (e.g., pike, porgy, see
Table V), state/local data were used. It is possible that
the use of local residue data could lead to overesti-
mation of dietary mercury exposure in this analysis.
Nonetheless, the result suggesting that approximately
10% of women of childbearing age may be exposed
to mercury levels from eating fish/shellfish above the
EPA’s RfD is consistent with previous assessment by
the National Academy of Sciences (NAS).(25) Further,
the fact that the predicted 75th and 90th percentile es-
timates of blood mercury levels for females in the 16-
to-49-year group and the 90th percentile estimate for
the children in the 1-to-5-year group are not signif-
icantly different from those reported by NHANES,
provides some confidence in the predictive value of
the model in assessing longitudinal/usual intake and
mercury exposure in the upper percentile range. As
for the model underprediction of mercury exposure
at the lower percentile (below the 50th percentile,
see Table IX) when compared with the NHANES
biomonitoring data, it is suspected that as the num-
ber of food intake days are increased (more than the
30 days in this analysis), the ability to fill in exposure
values at the lower percentiles would be increased.
As these exposure levels are small and well below
the RfD, this missing information would be of minor
consequence in assessing public health concerns.



Several differences between the NHANES
biomonitoring and food consumption data should,
however, be noted. First, although mercury in
seafood is largely in the form of methyl mercury, the
NHANES blood mercury levels are for total mercury,
including organic mercury. Thus the NHANES levels
also reflect exposures to inorganic mercury from
dental amalgams and other sources. Second, while the
NHANES biomonitoring data are based on limited
geographical coverage (12 locations) and smaller
sample size (e.g., 248 children in the 1-to-5-year
group), the NHANES food frequency covers all U.S.
census regions and larger sample size (e.g., 1,085
children aged 1 to 5 years). Thus, it is possible that
the NHANES frequency survey may have captured
individuals from other geographical regions with



seafood consumption habits that are different from
the individuals in the 12 locations included in the
NHANES biomonitoring program.



Finally, it is acknowledged that in an ideal situa-
tion, the best approach to obtain long-term averages
of food intakes would be to collect multiple days of the
24-hour recalls or food records, repeatedly at various
time points, for example, obtaining seven-day food
records for each subject every quarter of the calen-
dar year. Statistical methods can be applied to esti-
mate the within-subject and between-subject varia-
tions when this type of data is collected. Further, in
an ideal situation, frequency data would also be col-
lected and regression analysis can be carried out to
relate food intake from food frequency data and food
intake from food records or 24-hour recall. However,
because of high costs, these ideal approaches can only
be implemented on a very limited scale, e.g., a small
group of individuals. At the national level, typically
available intake data are those collected from 24-hour
recall surveys. The methodology presented in this ar-
ticle provides an alternative method of making use
of currently available data to improve estimates of
long-term exposure when the ideal longitudinal data
are not available. If there is a relationship between
amounts of foods consumed on a given day and the
frequency of consumption of those foods over time,
the Monte Carlo analysis of merging the NHANES
food frequency data and the amount of foods con-
sumed per eating occasion, as was done in this case
study, would retain that relationship and likely im-
prove the prediction of long-term intakes.



5. CONCLUSION



The cost of food consumption survey and research
is expected to continue to escalate in light of the rapid
change in U.S. diets. Nonetheless, questions about
the relationship between dietary exposure to ubiq-
uitous environmental contaminants such as mercury
and health effects will continue to place great de-
mand on refinement of consumption estimates. The
approach outlined in this article presents a proba-
bilistic method of bridging the complementary infor-
mation obtained from a traditional epidemiological
tool (i.e., the NHANES food frequency data) with
data from quantitative food survey (the CSFII) to
estimate longitudinal (usual) intake. While statistical
modeling of the CSFII data alone to estimate usual
intakes may be appropriate, the NHANES frequency
surveys provide an opportunity to empirically derive
longitudinal food consumption estimates. Addition-
ally, public health surveillance such as the NHANES
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biomonitoring of mercury offers valuable insight into
the validity of the dietary exposure model. In the
case of females of childbearing age and children in
the 1-to-5-year group, the model appears to provide
reasonable prediction of upper percentile estimates
of blood mercury levels. This case study and a pre-
vious one by Carrington et al.(13) demonstrate the
value of biomonitoring data in boosting confidence
in the exposure/risk estimates produced by exposure
models.



In summary, this case study demonstrates the po-
tential contribution of traditional public health infor-
mation (e.g., food frequency and biomonitoring) in
refining dietary exposure assessment for risk charac-
terization. Opportunity for applying the method out-
lined in this article would increase as frequency data
become available for a large number of foods. With
the recent merging of the USDA, CSFII, and annual
NHANES surveys, the likelihood for these opportu-
nities is expected to increase in the near future.
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Estimated long-term fish and shellfish intake—national health
and nutrition examination survey
Nga L. Tran1, Leila M. Barraj1, Xiaoyu Bi1, Laurie C. Schuda2 and Jacqueline Moya2



Usual intake estimates describe long-term average intake of food and nutrients and food contaminants. The frequencies of fish and
shellfish intake over a 30-day period from National Health and Examination Survey (NHANES 1999–2006) were combined with 24-h
dietary recall data from NHANES 2003–2004 using a Monte Carlo procedure to estimate the usual intake of fish and shellfish in this
study. Usual intakes were estimated for the US population including children 1 to o11 years, males/females 11 to o16 years, 16 to
o21 years, and adults 21þ years. Estimated mean fish intake (consumers only) was highest among children 1 to o2 years and 2 to
o3 years, at 0.37 g/kg-day for both age groups, and lowest for females 11 to o16 years, at 0.13 g/kg-day. In all age groups, daily
intake estimates were highest for breaded fish, salmon, and mackerel. Among children and teenage consumers, tuna, salmon, and
breaded fish were the most frequently consumed fish; shrimp, scallops, and crabs were the most frequently consumed shellfish. The
intake estimates from this study better reflect long-term average intake rates and are preferred to assess long-term intake of nutrients
and possible exposure to environmental contaminants from fish and shellfish sources than 2-day average estimates.
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INTRODUCTION
The term usual intake refers to the long-term average intake of a
food or nutrient by an individual.1 Estimation of usual intake
distributions is generally the measurement of interest to public
health officials. Usual intake, however, cannot be observed in
short-term dietary recall studies and is difficult to collect because
it is costly and burdensome to the respondent.1–3 Estimation of
the long-term average daily intake of a food on the basis of short-
term survey data, such as the 24-h dietary recall, can be
problematic particularly when foods of interest are consumed
only occasionally, as in the case of fish and shellfish.4,5 An
approach for dealing with this problem by combining food con-
sumption frequency data with 24-h recall data using probability-
based methods to estimate long-term average daily intake is
described by Tran et al.6 This paper describes the application of
the 2004 procedure explained in Tran et al6 that uses the
complementary NHANES dietary data sets on 24-h recall and food
consumption frequency to estimate the long-term average (or
usual) daily intake of fish and shellfish in the US population and
selected populations of children.



MATERIALS AND METHODS
Data
NHANES is a complex multistage probability sample designed to be
representative of the civilian US population.7 The NHANES data sets
provide nationally representative nutrition and health data and prevalence
estimates for nutrition and health status measures in the United States. The
NHANES over-samples minorities, low-income groups, adolescents aged
12–16 years, and adults 60þ years of age and older. Statistical weights
are provided by the National Center for Health Statistics (NCHS) for the
surveys to adjust for the differential probabilities of selection. The dietary



component of the survey is conducted as a partnership between the US
Department of Agriculture (USDA) and the US Department of Health and
Human Services (DHHS). DHHS is responsible for the sample design and
data collection, and USDA is responsible for the survey’s dietary data
collection methodology, maintenance of the databases used to code and
process the data, and data review and processing.



The dietary interview component of NHANES collects information on the
foods that were consumed during the 24-h period before the interview
(24-h dietary recall) and about the frequency of fish and shellfish
consumptions during the past 30 days (the food frequency questionnaire
(FFQ)). The 24-h dietary recall survey includes questions to assess the
amounts consumed at an eating occasion (EO). As part of the examination,
trained dietary interviewers collect detailed information on all foods and
beverages consumed by respondents in the previous 24 h time period
(midnight to midnight). In NHANES 2003–2004 and 2005–2006, a second
dietary recall is administered by telephone 3–10 days after the first dietary
interview, but not on the same day of the week as the first interview.



The FFQ data are included in the ‘‘Dietary Interview (Total Nutrients)’’
data file in the NHANES 1999–2000 and 2001–2002 and in the ‘‘Dietary
Interview (Total Nutrient Intakes—First Day)’’ data file in the NHANES 2003–
2004 and 2005–2006 NHANES. FFQ data are available for all participants
(41 year) in the NHANES 1999–2000 and 2005–2006, and only for children
aged 1 to o6 years and females aged 16 to o50 years in the 2001–2002
and 2003–2004 surveys.8–11 The FFQ data from all 4 years (NHANES 1999–
2006) were combined in this study analysis. Survey participants reporting
consumption of at least one of the fish or shellfish FFQ categories were
identified as ‘‘consumers.’’ The total frequency of consumption for 21 fish
and 10 shellfish FFQ categories are listed in Table 1.



This analysis uses the 24-h dietary recall data from the NHANES 2003–
2004 survey. As food consumption in the NHANES surveys are reported
‘‘as consumed’’, for example, tuna salad sandwich, USDA recipes were used
to estimate the fish/shellfish portions. In several occasions where USDA
recipes are missing, other recipes (e.g., previously compiled recipes from
cookbooks) were used. Over 300 NHANES food codes were mapped to
21 fish and 10 shellfish FFQ categories.
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Monte Carlo Model
The frequency of intake of fish and shellfish over a 30-day period from 4
years (NHANES 1999–2006) were combined with the 24-h dietary recall
data from NHANES 2003–2004 using the Latin Hypercube sampling
procedure provided in Crystal Ball12 to estimate the long-term average
daily intake of fish and shellfish for the US population stratified by life
stages and sex. The Latin Hypercube sampling procedure divides the input
distributions into intervals of equal probability and samples from each
interval according the interval’s probability distribution, so that the entire
range of the distribution is sampled in an even consistent manner.
Estimates of long-term daily intake of fish and shellfish for 12 different age
and gender groups including children 1 to o2, 2 to o3, 3 to o6, 6 to o11
years; males and females 11 to o16, 16 to o18, 18–21 years; and adult
males and females 21 years and older were derived. The children’s age
groups were chosen based on the EPA’s Guidance on Selecting Age
Groups for Monitoring and Assessing Childhood Exposures to Environ-
mental Contaminants.13 The following procedure was applied:



1. The fish and shellfish foods in NHANES 2003–2004 24-h dietary recall
were mapped with the FFQ fish/shellfish categories (Fj).



2. Amounts consumed per EO for each fish/shellfish FFQ category (Aj) were
derived from the NHANES 2003–2004 24-h dietary recall database using
the Foods and Residue Evaluation Program (FARE), a proprietary data
processing software that was developed to facilitate the mining of the
thousands of individual intake records in the NHANES database. FARE is
used by the US FDA, the USDA, the California Office of Environmental
Health Hazard Assessment, and by Health Canada Pest Management
Regulatory Agency to derive estimates of food, nutrient, and contaminant
intakes based on consumption data from NHANES and USDA’s Continuing
Survey of Food Intakes by Individuals (CSFII).14 FARE was used to process
consumption data for several peer-reviewed publications.6,15,16 A version
of the software that uses preprocessed data from the CSFII was also
reviewed by the US EPA Scientific Advisory Panel in 2000. The weighted
distribution of Aj were derived for several age/gender groups, including
children 1, 2, 3 to o6, 6 to o11, 11 to o16 years, males 16þ years, and
females 16þ years. Sample sizes were, however, too small in the
children’s group (o16 years) for the following fish types: flatfish, haddock,
mackerel, pike, pollock, porgy, sardines, sea bass, shark, swordfish, and
trout; hence these fish types were combined to derive a distribution of
grams per EO. Similarly, owing to small sample sizes, crayfish, lobster,
mussel, scallop, other shellfish, and unknown shellfish were also combined
in the derivation of the distribution of amount consumed per EO.



3. Eight-year statistical weights were derived using the approach
recommended by NHANES. Namely, the 4-year statistical weights
(WTMEC4YR) for participants in the 1999–2000 and 2001–2002 surveys
were multiplied by 0.50, and the 2-year statistical weights (WTMEC2YR) for
the participants in the 2003–2004 and 2005–2006 surveys were multiplied
by 0.25. In addition, as in NHANES 2001–2002 and 2003–2004 the fish
FFQ was only available for children 1 to o6 years and women 16 to o50
years, the statistical weights for these groups were further multiplied by
0.5 to avoid over-representing these age groups in the combined
database.



4. Crystal Ball was used to combine randomly sampled individual records
of fish/shellfish 30-day frequency of consumption from the NHANES
‘‘consumers’’ database with serving size values randomly sampled from
the corresponding distribution of intake amount per EO. In combining
the two sets of distributions, the within-person correlations were
maintained in the frequency of consumption. The following algorithm
was applied:



i Select a person (i) from the list of NHANES participants.
ii Identify his/her frequency of consumption of the various



NHANES fish/shellfish categories (Fij) in a 30-day period, and
iii For each NHANES fish/shellfish category (Fj), randomly select an



EO amount (Aj;Fij ) from the amount distribution Aj correspond-
ing to the fish/shellfish category.



iv Derive the 30-day total amount of fish/shellfish (j) consumed by
individual (i) as:



Tij¼ðFij�Aj;Fij Þ



Thus, for each selected NHANES individual, the algorithm produced a
total fish/shellfish consumed over the 30 days (Tij) and a 30-day average
daily intake was then derived by dividing Tij by 30.



As the data generated by the Monte Carlo procedure were used to
estimate fish intake by various populations of interest as well as the total
US population, a stratified approach was used to conduct the Monte Carlo
procedure in order to ensure that the populations were sampled with
comparable frequencies. Specifically, the FFQ ‘‘consumers’’ database was
split into five age strata and the Monte Carlo model was run independently
for each of the strata. The number of iterations used for each stratum was
set at 10 � the number of subjects in the stratum. This ensured that the
number of records for each stratum in the combined output from all the
individual strata runs was proportional to the initial number of records in
the strata (i.e., pre-Monte Carlo). Note that despite the fact that Latin
Hypercube sampling was used, some subjects were sampled more
frequently than others owing to the random sampling nature of the
Monte Carlo procedure.



Derivation of Summary Statistics and Statistical Weights
The output of the Monte Carlo procedure consisted of 170,070 records for
fish and/or shellfish consumers. These records were combined with the
data from the NHANES participants who had reported that they did not
consume any fish or shellfish in the past 30 days to regenerate the total US
population. Estimates of the mean, SEM, percentage consumers, selected
percentiles (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th), and
maximum intakes were derived for the total US population and select age/
gender groups. Statistical weights were used in the derivation of all
summary statistics, and the estimates of the SEM were also adjusted for the
complex NHANES survey design.



As the Monte Carlo procedure was applied only to consumers of fish
and/or shellfish, each consumer appears on average about 10 times, while
every non-consumer of fish or shellfish appears once in the final output
database. Also, as the random sampling in the Monte Carlo procedure
resulted in different number of ‘‘draws’’ for the various consumers of fish
and or shellfish, an adjusted weight was derived as the ratio of the 8-year
statistical weight to the number of times the particular individual was
sampled in the Monte Carlo procedure. This approach not only adjusted
for the different probabilities of selection in the Monte Carlo procedure,
but also ensured that the weighted proportion of consumers was not
distorted in the total output database that consisted of the records
generated by the Monte Carlo procedure for the fish and shellfish
consumers and the records for non-consumers.



Adjustment for the Design Effect
NHANES uses a complex, multistage, probability sampling design and
guidance provided by NCHS, indicating that analytic approaches designed
for data from simple random samples are not appropriate. Ignoring the
complex sampling design can lead to biased estimates and underestimate
the SE. The stratification and clustering of the design must be incorporated
into the analysis to get proper estimates of the SE. NCHS lists three
approaches for estimating the SE for complex surveys such as the NHANES
survey.17 These include the Taylor series (linearization) method, the
average design effect method, the balance repeated replication methods,
or the jackknife methods. We used the stratum variable (SDMVSTRA) and
the sampling using (PSU) variable (SDMVPSU) in STATA18 to estimate
sampling errors by the Taylor series method. However, when deriving SE
estimates on a per user basis, there were multiple cases where the number
of consumers of fish and shellfish in specific populations was too small,
and thus several strata consisted of a single PSU. The design-adjusted SE
could not be estimated in that case as it requires that at least two PSU be
present in each stratum. Thus in these cases, application of the Taylor’s
series method would have required redefining the stratum and PSU
variables (by combining multiple strata) on an analysis by analysis and
population by population basis to ensure that there were no strata with
single sampling units. Therefore, in the per user analyses, the SEs were
estimated using an alternative approach, namely the average design effect
(DEFF) method. The average DEFF method combines an average design
effect (DEFFavg) with estimates of the SE derived assuming simple random
sampling (SESRS) to estimate a ‘‘design-adjusted’’ SE:



Design�Adjusted SE ¼ SESRS�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEFFavg



p



However, as outlined by Scott and Holt, Skinner, and STATA18–20, the
DEFF is the ratio of the complex design-based variance estimate divided by
the estimate of the true variance that would be derived from a
hypothetical simple random sample. As it is not possible to estimate the
true variance for the hypothetical simple random sample, and hence the
DEFF, the design-adjusted SEs were derived by combining an average
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misspecification effect (MEFF). The MEFF (the ratio of the complex-
design-based variance estimate to the variance estimate derived by
ignoring the sample weights, stratification, and clustering) was derived for
each population using the consumers only FFQ data for total shell fish,
total fish, and total fishþ shell fish. An average MEFF was calculated for
each population and combined with the misspecified estimates of the
SE (SEMIS) to estimate ‘‘design-adjusted’’ SE:



Design�Adjusted SE¼ SEMIS�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MEFFavg



p



RESULTS
Summary estimates of the consumption distributions generated in
this study are presented below. No formal statistical tests were
conducted to assess whether the relative differences observed
between various life stages and sex are ‘‘significantly different’’ or
not.



Frequency of Consumption
The fish most often consumed, in descending order, by the US
population over a 30-day period were tuna, salmon, breaded fish,
other fish, and catfish (Table 1). The shellfish most often consumed,
in descending order, by the US population over a 30-day period
were shrimp, crab, clam, scallop, and oyster (Table 1).



Amount Consumed per EO
Table 2 presents the estimated amount of fish and shellfish
consumed per EO for the overall US population and select age
groups. The average amount of fish consumed is higher for males
16þ years (112 g/EO) than for females 16þ years (81.6 g/EO).



Among children, the average fish amount consumed is 24.8, 42.6,
45.6, and 83.0 g/EO for children o2, 2 to o3, 3 to o6, and 6 to
o11 years, respectively. As would be expected, the average
amount of shellfish consumed per EO is well below that of fish.
Nevertheless, the average amount of shellfish consumed remains
higher for males 16þ years (72.0 g/EO) than for females 16þ
years (50.9 g/EO). The per serving (g/EO) estimates derived from
the NHANES data are similar to those derived by Smiciklas-Wright
et al.21 from the CSFII 1994–1996 data.



Per Capita Fish and Shellfish Intake
The daily intake of fish (all types combined) and shellfish (all types
combined) among all NHANES subjects (i.e., intake from all
consumers divided by the total population of fish consumers and
non-consumers) is referred to as per capita intake. The estimated
mean per capita daily fish and shellfish intake are 8.78 g/day
(SE¼ 0.27 g/day) and 3.06 g/day (SE¼ 0.14 g/day), respectively.
Tuna, salmon, and breaded fish have the highest per capita daily
intake estimates and contribute 24%, 19%, and 11%, respectively,
to the total mean per capita fish intake. The estimated shrimp daily
intake is the highest and represents 48% of the total mean
per capita shellfish intake. The mean per capita estimates and SE
for select age groups in g/day and g/kg bw/day are summarized in
Table 3 for fish and shellfish. Detailed per capita percentile intake
estimates can be found in the Supplementary Data section.



Fish Consumers’ Daily Intake
Subjects with reported consumption of at least one of the fish
categories in the FFQ over the last 30 days are considered
fish consumers in this study. Based on this definition, 69% of the
overall NHANES subjects are fish consumers. Over 50% of the
children o11 years of age are fish consumers, and the highest
percentage of consumers (Z75%) is among the adult males and
females in the 21þ year age group. Among the fish consumers,
the estimated usual average daily intake of fish (all types
combined) on a g/kg-day basis is highest among children 1 to
o2 years and 2 to o3 years, both at 0.37 g/kg-day. The lowest fish
intake estimate is 0.13 g/kg-day for females aged 11 to o16 years.
Usual daily fish intakes and SE for the US population and select life
stages and sex in g/day and g/kg-day are presented in Table 4.
More detailed percentile intake estimates can be found in the
Supplementary Data section.



Among all fish consumers, tuna is the most frequently
consumed type (35%), followed by salmon (18%), breaded fish
(14%), catfish (10%), and other fish (10%). The average daily
intakes on a g/kg-day basis are the highest for salmon, mackerel,
and breaded fish (all three at 0.14 g/kg-day) and flat fish (0.13 g/
kg-day). Usual daily fish intakes and SE by fish types for the US
population are presented in Table 5. More detailed percentile
intake estimates can be found in the Supplementary Data section.



Among fish consuming children and teenagers, tuna, breaded
fish, and salmon are the three most frequently consumed fish, in
descending order. While tuna is the top consumed type of fish,
usual daily intake estimates for tuna are well below the breaded
fish and salmon estimates. Among children aged o11 years, the
usual daily intakes for breaded fish are the highest (ranging from
4 to 6.7 g/day) and usual daily intakes of salmon are the highest
among older children and teenagers aged 11 to o18 years
(ranging from 6 to 10.4 g/day). Usual daily intakes and SE for these
three top consumed fish types by children and teenagers are
presented in Table 6. More detailed percentile intake estimates
can be found in the Supplementary Data section.



Shellfish Consumers’ Daily Intake
Subjects with reported consumption of at least one of the shellfish
categories in the FFQ over the last 30 days are considered



Table 1. Total frequency of fish and shellfish consumed over a 30-day
period, US population.



Type Unweighted no. of users Total frequency



Fish
Tuna 6833 18,337
Salmon 3157 7317
Breaded fish 2952 6024
Other fish 2336 5606
Catfish 2379 4570
Unknown fish 1010 2230
Cod 1002 1897
Flatfish 904 1871
Sardines 570 1213
Trout 612 1150
Perch 487 954
Pollock 442 931
Haddock 481 930
Bass 282 541
Mackerel 174 375
Swordfish 197 302
Walleye 158 279
Sea bass 156 244
Porgy 72 137
Shark 49 64
Pike 37 57



Shellfish
Shrimp 8692 18,061
Crab 2185 3901
Clam 1123 1850
Scallop 975 1547
Oyster 755 1303
Lobster 835 1139
Other shellfish 555 951
Mussel 375 603
Crayfish 235 488
Unknown shellfish 62 110
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‘‘shellfish consumers’’ in this study. Based on this definition,
48% of the overall NHANES subjects are shellfish consumers.
Twenty-two percentage of the children aged 1 to o2 years are
shellfish consumers, and the highest percentage of consumers is
among the adult males and females 21þ -year-old group
(56% and 53%, respectively). Among the shellfish consumers,
the average intake of shellfish (all types combined) on a g/kg-day
basis is highest among children 3 to o6 years at 0.18 g/kg-day.
The lowest estimated shellfish intake is 0.05 g/kg-day for
children aged 1 to o2 years. Usual daily shellfish intake estimates
and SE for the US population and select life stages and sex in
g/day and g/kg-day are presented in Table 4. More detailed
percentile intake estimates can be found in the Supplementary
Data section.



Among all shellfish consumers, shrimp is the most frequently
consumed shellfish (41%), followed by crabs (12%), scallops, and
clams (both at 7%). The estimated usual daily intake of shrimp,
crabs, and scallops are similar (0.06 g/kg-day) and the estimated
clams intake is the lowest (0.03 g/kg-day). While not among the
top consumed shellfish, the average daily intakes on a g/kg-day
basis is the highest for crayfish and other shellfish (0.07 g/kg-day).
Usual daily intake estimates and SE by shellfish types for the US
population are presented in Table 7. More detailed percentile
intake estimates can be found in the Supplementary Data section.
The percentile estimates indicate a larger variability between
subjects in a given age and sex group than between subjects in
different age and sex groups.



Among the children and teenage shellfish consumers, shrimp is
also the most frequently consumed shellfish. On a mean daily
intake basis, the highest amount of shellfish consumed (in g/kg-
day) is either for shrimp, scallop, or crabs depending on the age
group. Usual daily intake estimates and SE for these three top
consumed shellfish by children and teenagers are presented in
Table 8. More detailed percentile intake estimates can be found in
the Supplementary Data section. The percentile estimates indicate
a larger variability between consumers in a given age and sex
group than between consumers in different age and sex groups.



DISCUSSION
While the 24-h recall has been the most common method used to
collect food intake information,22 data from a limited number of
recalls are the least ideal for estimating usual and longer term
average daily food intakes owing to the intra-individual variation
of consumption from day to day.23 Intake distributions for
consumers of foods that are not consumed on a daily basis,
such as fish, based on 24-h recall tend to be skewed to the
right.24,25 Exposure estimates for fish consumers derived from
rightly skewed food intake distributions tend to overestimate
actual long-term exposure at the high end and thus could
attenuate relationships that may exist between the dietary
exposure and the studied effect. However, differences at the per
capita mean are less accentuated. Lambe et al.5 compared per
capita mean intakes from 3-day and 14-day diary surveys and
found that per capita intakes from the 14-day diary survey were on
average 0.9 times the per capita mean from the 3-day diary survey.
Table 9 compares the per capita mean usual intake estimates
derived in this study to the per capita mean 2-day intakes from
USDA’s 1994–1996 and 1998 CSFII.26 The same relative difference
that was observed by Lambe et al.5 is observed between the per
capita mean intakes derived in this study and the per capita means
based on the 2-day CSFII survey for most populations considered.
However, the difference for children 11–16 years is much larger.
While the reason for the larger difference in this population is not
clear, it could be related to the fact that the estimates refer to two
different studies and time periods, or that some FFQ respondents
underestimated the frequency of consumption of fish or only
reported consumption of fish ‘‘meals’’ or did not include
consumption of fish in mixtures in their reported frequencies.



Other published estimates of fish consumption in the United
States generally refer to specific populations from limited
geographical locations (e.g., occupational or recreational fishermen
and their families) or to specific ethnic groups or are representative
of short-term intakes.27–31 Hence, estimates from these studies
would not be comparable to estimates derived in the current study.
However, long-term fish intake estimates derived in this study are



Table 2. Fish and shellfish consumed per EO, NHANES 2003–2004.



Population g per eating occasion (g/EO)



No. EOa Mean 10th 25th 50th 75th 90th 95th



All fish
Children 1 to o2 years 685,964 24.8 2.7 3.1 13.7 34.2 73.5 85.1
Children 2 to o3 years 601,086 42.6 7.3 22.2 33.9 54.9 101 102
Children 3 to o6 years 1,867,554 45.6 8.1 22.4 33.8 53.3 94.1 137
Children 6 to o11 years 2,254,487 83.0 22.8 47.7 56.4 121 195 196
Males 11 to o16 years 1,241,885 85.5 12.5 30.7 63.2 114 190 253
Females 11 to o16 years 1,588,949 72.6 15.8 31.3 53.3 94.2 170 210
Males 16þ yearsb 27,963,264 112 26.1 52.2 93.1 149 236 265
Females 16þ yearsb 30,720,077 81.6 17.6 38.6 62.7 105 159 215
US population 66,923,266 92.3 18.3 42.4 68.5 122 203 254



All shellfish
Children 1 to o2 years 141,632 7.3 — — — — — —
Children 2 to o3 years 144,975 15.7 — — — — — —
Children 3 to o6 years 477,026 42.1 8.4 13.8 40.3 50.4 100 101
Children 6 to o11 years 1,531,852 38.2 4.0 8.4 34.2 46.1 75.8 114
Males 11 to o16 years 357,600 48.0 7.6 7.8 16.2 58.2 123 252
Females 11 to o16 years 635,432 53.5 12.4 16.3 24.2 89.8 130 148
Males 16þ yearsb 18,545,624 72.0 9.3 21.6 45.3 107.1 168 244
Females 16þ yearsb 15,062,415 50.9 8.2 19.0 34.7 65.0 108 149
US population 36,896,556 60.6 8.1 18.1 37.3 78.4 134 220



aWeighted number of EOs.
bThe serving size distributions of seafood among the older adolescent and adult populations (adolescents 16 to o18 years, adolescents 18 to o21 years, and
adults 21 years and older) were comparable such that the serving size distributions by age/gender, males 16þ and females 16þ years old, were
representative of the older adolescent and adult populations.
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similar to recent estimates of usual intake of fish and seafood based
on the data from NHANES 2001–2004 from the National Cancer
Institute (NCI) (Table 10).32



The NCI model is based on the same general premise as the
approach used in the current study, namely that usual intake is
equal to the probability of consumption times the amount
consumed. The current study combined the empirical distribution
of the number of EOs per day with the empirical distribution
of amounts consumed per EO, while the NCI approach uses
more complex statistical methods to estimate the probability of



consumption and the distribution of daily consumption amounts.
Specifically, the NCI method consists of two parts.33 The first part
of the NCI approach uses logistic regression with a person-specific
random effect to model the probability of consumption on a given
day. The probability of consumption is estimated from the 24-h
dietary recall data. The second part of NCI’s model specifies the
consumption-day amount of a food using the 24-h recall data on
a transformed scale. It includes a person-specific effect as well as
within-person variability owing to day-to-day variation in an
individual’s intake and other sources of random error. The NCI



Table 3. Per capita (consumers and non-consumers) usual intake of
fish and shellfish (usual reflects 30-day average).



Population %
Consumers



Intake
(g/day)



Intake
(g/kg/day)



Mean SE Mean SE



All fish
Children 1 to
o2 years



53 2.22 0.16 0.19 0.013



Children 2 to
o3 years



60 3.02 0.19 0.22 0.014



Children 3 to
o6 years



59 3.56 0.18 0.20 0.010



Children 6 to
o11 years



51 4.39 0.32 0.15 0.012



Males 11 to o16
years



48 3.76 0.36 0.07 0.007



Females 11 to
o16 years



48 3.25 0.37 0.06 0.008



Males 16 to o18
years



49 6.32 0.95 0.09 0.014



Females 16 to
o18 years



48 3.98 0.44 0.07 0.008



Males 18 to o21
years



55 8.66 1.19 0.11 0.012



Females 18 to
o21 years



56 5.15 0.40 0.08 0.006



Males 21þ
years



76 13.50 0.51 0.16 0.006



Females 21þ
years



75 9.16 0.33 0.13 0.005



Total US 69 8.78 0.27 0.14 0.005



All shellfish
Children 1 to
o2 years



22 0.12 0.01 0.011 0.001



Children 2 to
o3 years



26 0.38 0.04 0.029 0.003



Children 3 to
o6 years



29 0.91 0.07 0.051 0.004



Children 6 to
o11 years



33 1.10 0.11 0.038 0.004



Males 11 to o16
years



33 1.52 0.23 0.028 0.004



Females 11 to
o16 years



35 1.36 0.13 0.026 0.002



Males 16 to o18
years



39 2.16 0.36 0.030 0.005



Females 16 to
o18 years



39 1.88 0.29 0.032 0.005



Males 18 to o21
years



48 3.53 0.48 0.047 0.007



Females 18 to
o21 years



42 2.07 0.21 0.032 0.003



Males 21þ
years



56 4.88 0.27 0.058 0.003



Females 21þ
years



53 3.17 0.15 0.046 0.002



Total US 48 3.06 0.14 0.046 0.002



Table 4. Usual intake of fish and shellfish among consumers by age
group (usual reflects 30-day average).



Population %
Consumers



Intake
(g/day)



Intake
(g/kg/day)



Mean SE Mean SE



All fish
Children 1 to
o2 years



53 4.16 0.10 0.37 0.009



Children 2 to
o3 years



60 5.03 0.11 0.37 0.008



Children 3 to 6
years



59 6.00 0.09 0.33 0.005



Children 6 to
o11 years



51 8.64 0.17 0.30 0.006



Males 11 to o16
years



48 7.85 0.22 0.15 0.005



Females 11 to
o16 years



48 6.80 0.20 0.13 0.004



Males 16 to o18
years



49 12.83 0.63 0.18 0.009



Females 16 to
o18 years



48 8.29 0.29 0.14 0.005



Males 18 to o21
years



55 15.88 0.86 0.20 0.011



Females 18 to
o21 years



56 9.25 0.24 0.15 0.004



Males 21þ
years



76 17.86 0.20 0.21 0.003



Females 21þ
years



75 12.27 0.14 0.18 0.002



Total US 69 12.80 0.28 0.20 0.005



All shellfish
Children 1 to
o2 years



22 0.56 0.02 0.05 0.002



Children 2 to
o3 years



26 1.48 0.05 0.11 0.004



Children 3 to 6
years



29 3.15 0.07 0.18 0.004



Children 6 to
o11 years



33 3.33 0.12 0.12 0.005



Males 11 to o16
years



33 4.61 0.23 0.09 0.004



Females 11 to
o16 years



35 3.90 0.18 0.08 0.003



Males 16 to o18
years



39 5.49 0.29 0.08 0.004



Females 16 to
o18 years



39 4.77 0.28 0.08 0.005



Males 18 to o21
years



48 7.29 0.32 0.10 0.005



Females 18 to
o21 years



42 4.93 0.16 0.08 0.003



Males 21þ
years



56 8.71 0.12 0.10 0.002



Females 21þ
years



53 5.97 0.09 0.09 0.001



Total US 48 6.38 0.15 0.10 0.002



Estimated long-term fish and shellfish intake
Tran et al



132



Journal of Exposure Science and Environmental Epidemiology (2013), 128 – 136 & 2013 Nature America, Inc.











summary tables do not specify whether the estimates are for
consumers only or per capita estimates. A recent publication
showed a larger association between serum mercury levels and
estimates of long-term intake of fish derived using the NCI
method, than between serum mercury levels and the simple 2-day
average intake estimates.34



Carrington and Bolger35 derived estimates of long-term fish
intake by women aged 18–44 years using consumption data from



the 1994 to 1996 and 1998 CSFII, adjusted to reflect the
proportion of household reporting fish consumption over a
12-month period. The estimated median, 75th, 90th, and 95th
percentile intake estimates derived by Carrington and Bolger35,
expressed in oz/day were 0.23, 0.57, 1.38, and 2.09, which are
comparable to the estimates derived in the current study.



The usual intake distributions were generated using a Monte
Carol procedure that combined the frequency of fish and shell fish
consumption with gram per EO values randomly selected from
age- and sex-specific gram per EO distributions derived from
short-term intake data. These gram per EO distributions do not
distinguish between individual variation and temporal (i.e., within
individual) variation. Also as the same gram per EO distributions
were used for subjects in the same age and sex group, the
approach used is implicitly assuming that the variation observed
in the gram per EO is entirely temporal (i.e., that there is no
individual variation for subjects in the same age and sex group).



Table 5. Usual intake by fish types among all fish consumers (usual
reflects 30-day average).



Fish type % Consumer Intake (g/day) Intake
(g/kg/day)



Mean SE Mean SE



Tuna 35 5.87 0.13 0.09 0.00
Salmon 18 8.80 0.36 0.14 0.01
Breaded fish 14 7.26 0.21 0.14 0.00
Other fish 10 6.72 0.44 0.12 0.01
Catfish 10 7.17 0.19 0.11 0.00
Cod 7 7.74 0.33 0.11 0.00
Flat fish 6 8.06 0.31 0.13 0.01
Unknown fish 4 6.94 0.38 0.10 0.01
Haddock 3 6.40 0.34 0.09 0.00
Trout 3 5.84 0.26 0.09 0.00
Pollock 3 6.96 0.52 0.11 0.01
Perch 2 7.94 0.68 0.11 0.01
Sardine 2 7.22 0.38 0.12 0.01
Bass 1 7.94 1.10 0.11 0.01
Swordfish 1 4.87 0.27 0.07 0.01
Walleye 1 7.54 0.66 0.10 0.01
Seabass 1 4.96 0.39 0.07 0.01
Mackerel 1 8.48 0.08 0.14 0.04
Shark 0.3 3.79 0.21 0.07 0.00
Pike 0.3 4.78 0.35 0.07 0.01
Porgy 0.2 5.56 0.46 0.10 0.01



Table 6. Usual intake of top three fish types among consuming children (usual reflects 30-day average).



Population Fish type % Consumers Intake (g/day) Intake (g/kg/day)



Mean SE Mean SE



Children 1 to o2 years Tuna 24 0.78 0.04 0.07 0.004
Breaded fish 18 4.13 0.18 0.36 0.02
Salmon 11 3.72 0.18 0.33 0.02



Children 2 to o3 years Tuna 30 2.93 0.10 0.22 0.01
Breaded fish 20 4.19 0.14 0.31 0.01
Salmon 11 2.51 0.17 0.18 0.01



Children 3 to o6 years Tuna 27 2.84 0.05 0.16 0.003
Breaded fish 21 4.12 0.12 0.24 0.01
Salmon 10 4.83 0.14 0.27 0.01



Children 6 to o11 years Tuna 25 4.99 0.12 0.17 0.004
Breaded fish 15 6.74 0.30 0.25 0.01
Salmon 10 4.02 0.18 0.14 0.01



Females 11 to o16 years Tuna 22 5.39 0.23 0.10 0.004
Breaded fish 11 4.83 0.48 0.09 0.01
Salmon 9 6.55 0.41 0.13 0.01



Females 16 to o18 years Tuna 26 5.02 0.22 0.09 0.004
Salmon 12 7.45 0.61 0.13 0.01
Breaded fish 7 6.74 0.80 0.11 0.01



Males 11 to o16 years Tuna 17 5.24 0.23 0.10 0.004
Salmon 12 5.98 0.43 0.11 0.01
Breaded fish 9 4.99 0.44 0.10 0.01



Males 16 to o18 years Tuna 19 6.47 0.56 0.09 0.01
Salmon 13 10.38 1.00 0.14 0.01
Breaded fish 8 9.72 1.63 0.13 0.02



Table 7. Usual shellfish intake by type among all shellfish consumers
(usual reflects 30-day average).



Shellfish types %
Consumers



Intake
(g/day)



Intake
(g/kg/day)



Mean SE Mean SE



Shrimp 41 3.63 0.08 0.06 0.00
Crab 12 4.14 0.12 0.06 0.00
Clam 7 2.12 0.08 0.03 0.00
Scallop 7 4.43 0.13 0.06 0.00
Lobster 5 3.83 0.15 0.06 0.00
Oyster 4 2.48 0.13 0.04 0.00
Other shellfish 3 4.76 0.20 0.07 0.00
Mussel 2 4.29 0.18 0.06 0.00
Crayfish 1 4.45 0.36 0.07 0.01
Unknown
shellfish



0.2 4.52 0.96 0.06 0.01
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Allowing for inter-individual variation in the amount consumed
per EO would be expected to result in larger long-term individual
variation in fish consumption.



A potential limitation of the approach used in this study stems
from applying one EO amount to a person’s frequency of
consumption, and thus not allowing for potential within-person



Table 8. Usual intake of top three shellfish types among consuming children (usual reflects 30-day average).



Population Shellfish type % Consumers Intake (g/day) Intake (g/kg/day)



Mean SE Mean SE



Children 1 to o2 years Shrimp 19 0.48 0.02 0.04 0.001
Crab 4 0.40 0.03 0.04 0.003
Scallop 1 0.45 0.05 0.04 0.004



Children 2 to o3 years Shrimp 21 1.57 0.06 0.12 0.005
Crab 5 0.48 0.02 0.04 0.002
Scallop 1 0.31 0.02 0.02 0.002



Children 3 to o6 years Shrimp 25 1.98 0.03 0.11 0.002
Crab 4 3.43 0.16 0.20 0.010
Scallop 1 3.46 0.26 0.19 0.016



Children 6 to o11 years Shrimp 28 1.96 0.06 0.07 0.002
Crab 6 3.12 0.27 0.11 0.011
Scallop 1 3.26 0.55 0.12 0.023



Females 11 to o16 years Shrimp 28 3.21 0.17 0.06 0.003
Crab 7 2.30 0.18 0.04 0.004
Scallop 2 2.19 0.34 0.04 0.006



Females 16 to o18 years Shrimp 32 2.83 0.22 0.05 0.004
Crab 10 3.63 0.37 0.06 0.006
Scallop 2 10.92 2.55 0.18 0.042



Males 11 to o16 years Shrimp 27 3.23 0.19 0.06 0.003
Crab 6 2.76 0.27 0.05 0.005
Scallop 2 3.86 0.72 0.07 0.012



Males 16 to o18 years Shrimp 33 3.95 0.26 0.06 0.004
Crab 7 3.45 0.44 0.04 0.006
Scallop 3 3.10 0.46 0.04 0.005



Table 9. Comparison with other per capita intake estimates.



Population Fish type Mean (g/day) CSFII estimate (g/day)26



All fish 3.56
Children 3 to o6 years All shellfish 0.91 Children 3–5 years



All fish and shellfish 4.47 5.2



All fish 4.39
Children 6 to 11 years All shellfish 1.10 Children 6–10 years



All fish and shellfish 5.49 6.3



All fish 3.76
Males 11 to o16 years All shellfish 1.52



All fish and shellfish 5.28 M and F 11–15 years
8.5



All fish 3.25
Females 11 to o16 years All shellfish 1.36



All fish and shellfish 4.61



All fish 6.32
Males 16 to o18 years All shellfish 2.16



All fish and shellfish 8.48 M and F 16–17 years
8.1



All fish 3.98
Females 16 to o18 years All shellfish 1.88



All fish and shellfish 5.86



All fish 13.50
Males 21þ years All shellfish 4.88



All fish and shellfish 18.38 M and F 18þ years
15.3



All fish 9.16
Females 21þ years All shellfish 3.17



All fish and shellfish 12.33
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EO-to-EO variability. However, the process was repeated multiple
times per person (an average of 10 times), hence allowed for
different EO amounts to be applied to the same person at each
iteration. The approach used in this study could result in more
variability in the usual intake distribution at the population level
than if different EO amounts were selected for each of the EO.



Another potential limitation of the approach used in this study
is the assumption of independence between the distributions of
the number of servings of fish consumed per month and the
amount of fish consumed per serving. Tooze et al.33 analyzed data
from four 24-h dietary recalls from the Eating at America’s Table
Study (EATS) and showed a positive association between the
amount of food consumed per day and the number of days the
food was reported consumed. Based on their results, Tooze et al.33



indicate that ignoring the potential positive association between
the two distributions could result in overestimation of the usual
amount of food consumed at the lower percentiles and under-
estimation at the upper percentiles. We estimated the Pearson
correlation coefficient between the reported frequency of
consumption per month and the amount consumed per day for
tuna, the fish reported to be most frequently consumed in the
FFQ. The correlation was 0.11 for consumers of tuna on day 1,
� 0.16 for consumers of tuna on day 2, and � 0.02 for consumers
on day 1 or day 2. These results appear to contradict the
correlations reported by Tooze et al.33 It is not possible to
determine whether this apparent contradiction is due to the
difference between the reference periods for the frequency
distribution (30 days in the NHANES FFQ versus 4 days in EATS) or
to generalize the current finding for tuna to other types of fish.



This study combines data from several NHANES data sets
spanning a period of 7 years (from 1999 to 2006). It is possible
that fish consumption patterns may have changed over this
period. Further, there were methodological differences between
the various NHANES included in this assessment. The approach



included an adjustment to the statistical weights assigned to
participants in the various NHANES, but did not address other
potential differences between the various NHANES. Further, the
weight adjustment approach used owing to the differences in
the targeted age groups in the various NHANES survey years
may have distorted the weighting procedure recommended by
NHANES. As a result, the total population counts and estimates
may not be entirely representative of the overall US population (all
ages combined) and of age groups that overlap with females 16 to
o50. Our tabulated results include the following age cohorts:
children 1 to o2, 2 to o3, 3 to o6, 6 to o11 years, and M/F 11 to
o16, 16 to o18, 18 to o21, 21þ years, as well as total US. Hence,
results for females 21þ years and total US may be affected by this
weight adjustment.



Conclusion
Estimation of the long-term average daily intake of a food on the
basis of short-term survey data, such as the 24-h dietary recall, can
be problematic particularly when foods of interest are consumed
only occasionally, as in the case of fish and shellfish. This study
uses empirical distributions of long-term frequency of fish
consumption and fish intakes per EO derived from several
NHANES databases to estimate long-term fish intake for the US
population. The intake estimates from this study better reflect
long-term average intake rates and are preferred to assess long-
term intake of nutrients and possible exposure to environmental
contaminants from fish and shellfish sources than 2-day average
estimates.
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Table 10. Comparison of usual intake estimates of fish and shell fish (oz/day)



Study Age (years) Mean Percentile



5 10 25 50 75 90 95



Children
NCI 1–3 0.20 0.02 0.03 0.06 0.12 0.23 0.41 0.56
Current study 1–2 0.13 o0.01 0.01 0.02 0.07 0.17 0.30 0.46
NCI 4–8 0.20 0.03 0.04 0.08 0.16 0.30 0.52 0.71
Current study 3–6 0.23 0.02 0.03 0.06 0.13 0.27 0.50 0.72



Males
NCI 9–13 0.20 0.01 0.02 0.05 0.12 0.28 0.55 0.80
Current study 11–16 0.29 0.01 0.02 0.06 0.15 0.32 0.65 1.05
NCI 14–18 0.20 0.01 0.02 0.06 0.14 0.30 0.59 0.86
Current study 16–18 0.44 0.02 0.04 0.09 0.23 0.50 1.13 1.70
NCI 19–30 0.50 0.03 0.06 0.12 0.28 0.58 1.06 1.51
Current study 18–21 0.56 0.03 0.05 0.12 0.29 0.64 1.23 1.80
NCI 19þ 0.70 0.05 0.09 0.19 0.42 0.87 1.56 2.17
Current study 21þ 0.73 0.04 0.08 0.20 0.45 0.92 1.66 2.32



Females
NCI 9–13 0.20 0.03 0.04 0.07 0.12 0.22 0.35 0.47
Current study 11–16 0.25 0.01 0.02 0.05 0.14 0.30 0.59 0.87
NCI 14–18 0.30 0.04 0.06 0.11 0.19 0.33 0.53 0.69
Current study 16–18 0.31 0.02 0.03 0.07 0.17 0.36 0.70 1.09
NCI 19–30 0.30 0.05 0.08 0.13 0.23 0.39 0.62 0.80
Current study 18–21 0.35 0.02 0.03 0.08 0.20 0.44 0.83 1.13
NCI 19þ 0.50 0.09 0.12 0.22 0.39 0.67 1.04 1.31
Current study 21þ 0.49 0.03 0.06 0.13 0.30 0.61 1.10 1.55



All persons
NCI 1þ 0.50 0.04 0.07 0.14 0.31 0.62 1.10 1.52
Current study 1þ 0.51 0.03 0.05 0.12 0.29 0.62 1.18 1.69
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Future Directions for What We Eat in America–NHANES:
The Integrated CSFII-NHANES



Estimation of Usual Intake Distributions of Nutrients and Foods1,2



Alicia L. Carriquiry3



Department of Statistics, Iowa State University, Ames, IA 50011-1210



ABSTRACT The issue of estimating usual intake distributions using daily intake data as collected by nationwide
food consumption surveys is discussed. Of interest are not only the usual nutrient intake distributions based on
food intake alone, but also the total nutrient intake distributions that must be based on information on food and
supplement consumption. The problems of estimating usual food intake distributions and distinguishing between
frequently consumed and infrequently consumed food items are considered. Data needs as well as statistical
methodologies available to carry out each of the tasks outlined above are discussed, with particular reference to
the integrated National Health and Nutrition Examination Survey that is now in the field. The replicated 24-h recalls
should be augmented with a propensity questionnaire to improve on the estimation of intake distributions for
infrequently consumed nutrients, supplements and food items. J. Nutr. 133: 601S–608S, 2003.



KEY WORDS: ● usual intake ● adjusted distributions ● measurement error ● propensity to consume
● DRI



The United States government began collecting dietary
intake data in the 1930s. Since then, information on the usual
intake of nutrients and foods by the U.S. population has been
used to design food assistance programs, monitor the nutri-
tional status of groups, establish guidelines for a healthy diet
and in general serve as a blueprint for activities as diverse as
government interventions and basic research. Usual intake of
a nutrient or a food is the long-run average intake of the food
or the nutrient by an individual. It is the usual rather than the
daily intake of a nutrient or a food that is often of interest to
policy makers and researchers. In particular, investigators in-
terested in assessing intake at the group or population level
will require a reliable estimate of the usual intake distribution
in the group or the population of interest. Estimation of usual
intake distributions of various dietary components is the main
topic for discussion in this contribution.



Several national food consumption surveys have been con-
ducted in the past 25 y. Although sample sizes have tended to
be adequate for most gender and age groups, the number of
observations collected on each individual in the sample has
been decreasing over time because of the cost of collecting the
data and of respondent burden. In fact, two of the most
recently released dietary intake surveys, the most recent Con-
tinuing Survey of Food Intake by Individuals (CSFII)4 and the
third National Health and Nutrition Examination Survey
(NHANES III), collected only two observations on sample
individuals and for NHANES III the proportion of individuals
with a second dietary intake observation was only �5%.



The small number of daily observations on sampled indi-
viduals creates some challenges because dietary intake data are
notoriously difficult to analyze. Naı̈ve statistical analyses based
on one or two daily observations for each individual in the
sample may result in misleading summaries and conclusions;
therefore, it is important to carry out the appropriate analyses
of the data to uncover the wealth of information contained in
nationwide dietary intake surveys.



What are the characteristics of dietary intake data that pose
challenges for the analyses mentioned above? Underreporting
of energy and components such as alcohol and fats and over-
reporting of foods perceived to be socially acceptable such as
fruits and vegetables have been reported many times in the
literature (1–3) and are a serious shortcoming of all standard
survey instruments used in dietary intake surveys. Although a



1 From the workshop “Future Directions for the Integrated CSFII-NHANES:
What We Eat in America—NHANES” held on June 20–21, 2002, in Rockville, MD.
This workshop was sponsored by the Office of Dietary Supplements, National
Institutes of Health, U.S. Department of Health and Human Services (DHHS) and
the Agricultural Research Service, U.S. Department of Agriculture (USDA) and
cosponsored by the National Institutes of Child Health and Development, National
Institutes of Health, and the National Center for Health Statistics, Centers for
Disease Control and Prevention, DHHS, and the Cooperative State Research,
Education, and Extension Service and the Economic Research Service, USDA.
Guest editors for this workshop were Johanna Dwyer, Agricultural Research
Service, USDA; Mary Frances Picciano, Office of Dietary Supplements, National
Institutes of Health, DHHS; and Daniel J. Raiten, Office of Prevention Research
and International Programs, National Institute of Child Health and Human Devel-
opment, National Institutes of Health, DHHS.



2 This work was partially funded through grant 263HQ117308 from the Na-
tional Cancer Institute, Department of Health and Human Services; grant
0009630347 from the National Center for Health Statistics, Department of Health
and Human Services; and contract 882402001 from Mathematica Policy Re-
search.



3 E-mail: alicia@iastate.edu



4 Abbreviations used: CSFII, Continuing Survey of Food Intake by Individuals;
DRI, Dietary Reference Intake; EAR, Estimated Average Requirement; ISU, Iowa
State University; NCI, National Cancer Institute; NHANES, National Health and
Nutrition Examination Survey; NRC, National Research Council; UL, Tolerable
Upper Intake Level.
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clearly significant source of error, inaccurate reporting of in-
takes cannot be corrected via statistical adjustments, at least
with the current level of information on the causes and pat-
terns of incorrect reporting among various population sub-
groups. What can be effectively addressed via the appropriate
survey design and statistical analyses are attributes of dietary
intake data that include the day-to-day variability in intakes,
correlation of intakes reported over consecutive days, effect of
nuisance factors on intake (such as day of week, interview
sequence and method), nonnormality of reported intakes and
survey nonresponse. Appropriate approaches to account for
these and other attributes of dietary intake data when estimat-
ing usual intake distributions of nutrients and foods are dis-
cussed here.



The problem of estimating the usual intake distributions of
nutrients considering only food sources of intake has been
discussed in some detail in the past few years (4–9). Here we
revisit the issue and discuss in addition the problem of esti-
mating the usual nutrient intake distribution when both food
and supplement sources are considered. Despite the increasing
proportion of individuals’ nutrient intakes that is derived from
supplements for some nutrients, surprisingly little has been
published on how to combine the two intake sources to esti-
mate a distribution of total nutrient intake (8,10). This can
perhaps be explained by the scarcity of information available
on supplement intake at the individual level. The problems of
estimating usual food intake distributions and distinguishing
between frequently consumed and infrequently consumed food
items are also considered here.



Dietary intake data



The daily intake of a nutrient or a food, which we denote
Yij, is the intake observed for individual i on day j. Survey
instruments such as 24-h recalls, food diaries or records are
designed to capture daily intake. Daily intake exhibits varia-
tion from day to day within an individual, although in general
it is accepted that the mean of a large number of daily intakes
for an individual is a good estimator of the individual’s usual
intake of the nutrient or the food. Thus, in statistical terms, we
define the usual intake of a nutrient or the food to be the
expected value of the daily intake for that individual, or



yi � E{Yij � i }



Survey instruments such as food frequency questionnaires
attempt to capture usual intakes but typically fail to do so
accurately. Recent studies (11–13) showed that the correla-
tion between usual energy intake as measured by doubly la-
beled water and as measured by a food frequency questionnaire
can be remarkably low, thus putting in question the value of
food frequency questionnaires for quantitative dietary assess-
ment at the group level of the type discussed in this article.



The definition of usual intake above is implicit in the
simple measurement error model proposed by the National
Research Council (NRC) (4) that establishes that daily intake
is a deviation of usual intake, where the deviation is called a
measurement error:



Yij � yi � eij (1)



Here, yi has mean �y and variance �y
2 and eij has mean 0 and



variance �e
2. The variance �e



2 represents the day-to-day variance
and �y



2 represents the individual-to-individual variance in
intakes, or the variance of the usual intakes. Under the model,
the variance of daily intake has two components: the individ-
ual-to-individual and the day-to-day variability in intakes.



Researchers and policy makers who wish to assess the
intake of foods or nutrients in groups or populations are
typically interested in the distribution of usual intakes in the
group or population. That is, they are interested in estimating
the distribution of the yi from the observed Yij.



One simple approach to estimating usual intake distribu-
tions consists of using the mean of several days of daily intake
for each individual in the group as an estimator. Unfortu-
nately, although intuitively appealing, this simple approach is
likely to result in an inaccurate estimate of the usual intake
distribution because the presence of the day-to-day variability
in intakes can greatly inflate the variance of the distribution of
individual means. Consider the typical situation, where 2 d of
intake are obtained on each individual in a nationwide survey.
If Yi denotes the mean of the 2 d of intake for individual i, then
under model 1 the variance of the 2-d mean is



var (Yi) � �y
2 �



�e
2



2



If, as is often the case, the day-to-day variance of intake is
larger than the individual-to-individual variance, the distribu-
tion of 2-d means will have a variance that reflects more than
just the individual-to-individual variability in intakes. For
example, in the case of some vitamins such as vitamins A, E
and C, the day-to-day variability in intakes can be 4 or even
6 times as large as the individual-to-individual variability
(14,15). For nutrients such as protein and energy, which are
consumed more regularly, the day-to-day variability in intakes
is typically about as large as the individual-to-individual vari-
ability. Thus, any dietary assessment based on the distribution
of the mean of a few days of intakes will be biased, sometimes
severely so. That bias can be reduced by greatly increasing the
number of daily intakes that are collected on each individual
in the sample. For example, if instead of two daily intakes we
were to collect 10 or even 20 d of intake on each individual in
the sample, the variance of the mean of those days would
begin approaching the individual-to-individual variance, even
for nutrients that are not consumed regularly. This approach,
however, is impractical in terms of both cost and respondent
burden. Therefore, the only alternative available to practitio-
ners is to apply statistical adjustments to partially remove the
day-to-day variance from the daily intakes. The goal is to
obtain an estimate of the usual intake distribution with the
correct spread (i.e., variance).



Applying a statistical adjustment to remove the day-to-day
variance from daily intakes would be simple if daily intake
could be assumed to be normally distributed. Unfortunately,
the normality assumption is untenable for most nutrient intake
distributions, which typically exhibit a long tail to the right.
Furthermore, the distribution of daily intakes of food items
that are not consumed regularly exhibits a spike at zero,
corresponding to individuals who never consume the item and
to individuals who did not consume the item during the 2
interview days. Day-to-day variability in intakes is often not
homogeneous across individuals but is instead associated with
the individual’s level of intake. Thus, methods for estimating
usual intake distributions must be able to account for the
heterogeneous day-to-day variability in intakes. In the case of
infrequently consumed items, the methods must also be able to
distinguish between the real zero intakes that correspond to
nonconsumers and the occasional zero intakes that correspond
to consumers who happened to skip that particular food item
during the interview days. Reliable estimation of usual intake
distributions require that the appropriate data be available and
that adequate statistical methods be used for analyses.
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Estimating usual nutrient intake distributions using food
intake data



The implementation of any of the statistical adjustment
methods that remove the day-to-day variability from daily
nutrient intakes requires that a replicate observation be avail-
able on at least some individuals in the sample (4–6,8). The
question of how many individuals should have a replicate
observation for accurate estimation arises immediately and is
difficult to answer in the abstract. The replicate observations
contain information necessary for estimating the day-to-day
variance component in daily intakes, a key parameter in the
statistical adjustment procedure. If this variance is not reliably
estimated, then the observed daily intakes may shrink too
much or too little toward the group mean intake, and the
resulting estimated usual intake distribution may have a spread
that does not accurately reflect the individual-to-individual
variability in intakes. A simple rule of thumb is the following:
nutrients that are consumed more or less regularly, such as
energy, protein, fats, iron and calcium, are typically easier to
analyze than nutrients that are present in only some foods and
are therefore consumed infrequently, as is the case for most
vitamins and micronutrients. By “easier” we refer to the fact
that if a small proportion of individuals in the sample have
been interviewed twice, then it is likely that the estimated
distributions of the vitamins and the micronutrients are less
accurate than those that correspond to the macronutrients and
other more frequently consumed nutrients.



The CSFII and the integrated NHANES survey now in the
field will collect a replicate 24-h recall for each individual in
the sample. These data, with adequate statistical treatment,
will provide reliable estimates of usual nutrient intake distri-
butions for most nutrients and for most gender and age groups.
Because they are infrequently consumed, nutrients such as
lycopene, �-cryptoxanthin and �-carotene may require more
information than that provided by the two 24-h recalls. These
nutrients together with foods such as green leafy vegetables,
shellfish and vitamin C–containing fruits and with supple-
ments that are not consumed daily require additional intake
information as well as an extension of the statistical methods
available for nutrients that are regularly consumed and are
discussed later.



The need for adjusting daily intake distributions via statis-
tical methods was first proposed by NRC (4). The approach
proposed by NRC consisted of shrinking the individual mean
intakes toward the group mean intake, where the shrinkage
factor was the ratio of the individual-to-individual SD to the
total SD of daily intake. More precisely, the adjusted individual
usual intake estimator proposed by NRC is calculated as fol-
lows:



ỹi � Y� �
�y



��y
2 � �e



2�1/ 2 �Yi � Y�� (2)



where as before, Yi denotes the observed individual mean
intake and Y� now denotes the general group mean intake.
This approach is intuitively very appealing; if the day-to-day
variance �e



2 is close to zero, the best estimate of the usual
intake distribution is the distribution of the individuals’ ob-
served mean intakes. However, if the day-to-day variability is
very large relative to the individual-to-individual variance �y



2,
the estimated individual usual intakes are strongly shrunken
toward the general group mean, which results in an estimated
usual nutrient intake distribution with a very small variance,
corresponding to the relatively small individual-to-individual
component in the total variance of daily intakes. In other



words, the smaller the nuisance day-to-day variance, the closer
the adjusted intake distribution will be to the distribution of
individual means. The larger the “nuisance variance,” the
more the estimated usual intake distribution will resemble a
spike at the general group mean intake.



The shrinkage estimator of individual usual intake that was
proposed by NRC has good statistical properties only if the
distribution of daily intakes can be assumed to be normal.
Because in most cases daily intakes are not distributed as
normal random variables, the NRC committee proposed that
a log transformation be used on the daily intakes in an attempt
to meet the normality assumption. The estimated usual intakes
are then transformed back into the original scale by simply
applying the inverse (in the case of the log, the exponential)
transformation to the adjusted individual intakes. In expres-
sion 2 both the individual mean Yi and the group mean Y� (as
well as the two variances) would be computed from the log-
transformed daily intakes or log (Yij). The adjusted usual
intakes ỹi would then be transformed back into the original
scale by applying the inverse transformation, or exp(ỹi).



Although the NRC approach is simple to implement, it
may result in inaccurate estimation of usual nutrient intake
distributions because several of the assumptions behind model
1 on which it is based are not met by the procedure just
described. For example, the log transformation often does not
produce normally distributed transformed daily intake data, so
other transformations, including some beyond the usual power
family, may be needed for some nutrients. Perhaps more sig-
nificant, however, is the bias that may be introduced into the
estimator of the usual intake distribution by applying the
simple inverse transformation to the estimated individual
usual intakes as the NRC report (4) recommends. The mean of
a nonlinearly transformed variable is typically not equal to the
transformation of the mean of the variable, so a procedure that
uses the same transformation and its inverse on observations
and means will typically result in biased estimates of quantities
in the original scale.



Researchers at Iowa State University (ISU) proposed a
statistical adjustment procedure (5) that better accounts for
some of the characteristics of dietary intake data. The ISU
method (5,8) consists of essentially the same steps included in
the NRC method:



1. Daily intake data are first transformed into the normal
scale by applying a two-step transformation procedure.
In the first step, daily intake data are transformed using
the best possible power transformation, where “best”
here refers to how closely the distribution of the power-
transformed daily intakes approaches a normal distribu-
tion. In the second step, power-transformed daily in-
takes are mapped into the normal scale via a cubic spline
transformation.



2. Once daily intakes are transformed, the ISU method
proceeds in a manner very similar to the NRC approach
by computing an estimated usual nutrient intake in the
normal scale for each individual in the sample. The ISU
method, however, allows for the case where the day-to-
day variance in daily intake is heterogeneous across
individuals.



3. Perhaps the biggest difference between the two proce-
dures is found in the last step, where estimated usual
intakes are transformed back into the original scale.
Rather than implementing the naı̈ve back-transforma-
tion, the ISU method estimates a mean back-transfor-
mation that greatly reduces the bias that can be intro-
duced when proceeding as the NRC recommends.
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The estimated individual usual intakes in the original scale
can then be used to obtain an empirical estimate of the usual
nutrient intake distribution. From this, quantities of interest
such as mean, median, SD and percentiles of usual intake can
be estimated in a straightforward manner. Standard errors of
all those quantities, which take into account the complex
design of dietary intake surveys, can be obtained using repli-
cation methods such as the bootstrap or balanced repeated
replication. Software is available to carry out these computa-
tions. The program SIDE (Software for Intake Distribution
Estimation), which runs on a variety of platforms, is available
from ISU (16).



What are the consequences of not adjusting daily intakes?
As mentioned above, estimating the distribution of usual
intakes as the distribution of 1-d intakes or even as the
distribution of 2-d mean intakes can result in distributions
with too large a variance. As a consequence, estimates of
quantities such as the prevalence of nutrient inadequacy in a
group may be significantly biased when using the probability
approach (8) or the Estimated Average Requirement (EAR)
cut-point method approach (7,8,17) for estimating prevalence.
Briefly, the EAR cut-point method for estimating the preva-
lence of nutrient inadequacy establishes that, given certain
assumptions, the proportion of individuals in a group whose
usual intakes do not meet requirements can be estimated as the
proportion in the group whose usual intakes do not meet the
EAR for the nutrient. The method produces a reliable estimate
of the prevalence of inadequacy when the distribution of
requirements for the nutrient is symmetric around the EAR,
the individual-to-individual variance of requirements is less
than the individual-to-individual variance of intakes and in-
takes and requirements are independent. In addition, the
performance of the method improves when the true preva-
lence of inadequacy in the group is not too small or too
large (8).



For example, we estimated the usual nutrient intake distri-
bution of vitamin B-6 among women aged 19–50 y using the
1994–1996 CSFII. The EAR for this gender and age group is
1.1 mg/d. Thus, an estimate of the prevalence of vitamin B-6
inadequacy among women aged 19–50 y is obtained as the
proportion of women whose usual vitamin B-6 intake is below
1.1 mg/d (7,8,17). In Figure 1, we show the estimated usual
vitamin B-6 intake distributions that are obtained using either
one 24-h recall or both 24-h recalls adjusted using the ISU
method.



Notice that the two estimated distributions have noticeably
different variances and consequently have tails of different
lengths. The lower, more spread out distribution was obtained
using only one 24-h recall for each woman. The estimated
prevalence of vitamin B-6 inadequacy based on this distribu-
tion is �37%. The taller, narrower distribution was obtained
using the ISU method and the two 24-h recalls available for
each woman. The estimated prevalence in this case is �20%.
The difference between these two estimates is striking and can
potentially lead to very different conclusions and even poli-
cies. For nutrients such as vitamin A and E that can exhibit
even larger day-to-day variability, the difference between a
naı̈ve estimate of prevalence and an estimate using more
appropriate statistical approaches can be even more dramatic.



The ISU method produces reliable estimates of usual intake
distributions of most nutrients (8,9). The new integrated
NHANES survey, with a replicate observation on each sample
individual, collects the data that are needed for implementa-
tion of the method. Thus, for estimating the usual intake
distribution of nutrients, both the data and the methodology
are available. Additional challenges arise, however, in the case



of nutrients such as lycopene, whose intake pattern resembles
that associated with an infrequently consumed food item. For
those nutrients, additional data and an extension of the meth-
odology described above may be needed for accurate estima-
tion of usual intake distributions.



Estimating usual nutrient intake distributions using food
and supplement intake data



For some nutrients such as vitamin C and calcium, the
proportion of intake from supplement sources has increased in
the past few years (18). Approximately 33% of Caucasian
women aged 19–50 y reported consuming supplements during
NHANES III (10); 23% of African-American women and
18% of Hispanic women reported consuming supplements.
Because these percentages are based on a survey that is over a
decade old, they are likely to be even higher today. Therefore,
collecting the data and developing the methods that permit
estimating usual total nutrient intake distributions is likely to
be of interest to practitioners and policy makers.



Few data on a national scale are available for characterizing
supplement intake patterns. The CSFII has not collected
information on individual daily supplement intake beyond
some general questions on frequency. In NHANES III detailed
questions about specific supplements and doses were posed to
sampled individuals, but the instruments used to collect the
supplement intake data were meant to capture the usual sup-
plement consumption rather than the daily intake. These data
do not provide enough information to determine whether
nutrient intake from supplement sources is also subject to
day-to-day variability. If so, then it is important to determine
whether the ratio of day-to-day variance to total intake vari-
ance is similar to the ratio that is observed for nutrient intake
from food sources.



If nutrient intake from supplement sources for an individual
could be assumed to be essentially the same from day to day (as



FIGURE 1 Estimated usual intake distribution of vitamin B-6 for
women aged 19–50 y. Using only one 24-h recall for each woman gave
a flatter curve. Using two 24-h recalls and the ISU method for removing
day-to-day variability from daily intake gave a taller estimate. The
proportion of individuals with inadequate intakes is estimated using the
Estimated Average Requirement (EAR) cut-point method and the two
estimates of the usual nutrient intake distribution. (Source: 1994–1996
CSFII.)
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would be appropriate for individuals who consume the same
vitamin pill every day), then obtaining an estimate of total
nutrient intake would be simple: for each individual in the
sample, add the daily nutrient consumption from both sources
and then apply the methods described above to obtain an
estimate of the usual total nutrient intake distribution. If
day-to-day variability in supplement intake is negligible rela-
tive to the individual-to-individual variability in intake, then
the frequency instrument currently in use in NHANES to
collect supplement intake data might be adequate.



In the absence of information beyond that provided by the
frequency instrument on supplement intake, large (and untest-
able) assumptions must be made when combining food and
supplement intake data to estimate total nutrient intake. One
possible approach (8,10) consists of the following steps. Using
only food intake data, apply the methods described above to
obtain adjusted individual usual intakes in the original scale.
From the frequency information on supplement intake, com-
pute a daily individual intake of nutrient from supplement
sources by dividing the dose reported by the individual into its
frequency. The sum of both intakes, one adjusted and one not
adjusted, constitutes an estimate of the individual’s daily usual
total nutrient intake that can then be used for estimating the
distribution of total nutrient intake. Quantities of interest
such as mean, median and percentiles of intake can be ob-
tained from the distribution. Standard errors of all those quan-
tities can be obtained using a replication method such as the
bootstrap. This approach is unsatisfactory, however, because it
assumes that the day-to-day variability in nutrient intake from
supplement sources is zero. This is unlikely to be the case; the
variance of the usual total nutrient intake distribution may not
accurately reflect the individual-to-individual variance in total
usual intake, and this may result in biased estimates of quan-
tities such as the prevalence of nutrient inadequacy or the
proportion of individuals exceeding the Tolerable Upper In-
take Level (UL). The mean total nutrient intake can still be
reliably estimated via the approach just described.



The day-to-day variance in supplement intake may not be
negligible. If this is so, a frequency instrument cannot capture
the daily supplement intake and furthermore does not allow
for estimation of the day-to-day variance in supplement in-
take. It would appear, therefore, that replicate 24-h recalls to
capture daily supplement intake would provide the necessary
information for combining food intake and supplement intake
data in a statistically defensible manner. If replicate 24-h
recalls are extended to collect supplement intake data together
with food intake data, then daily intakes of nutrients from food
and supplement sources can be combined before adjustments
are made. The statistical adjustment methods would then be
applied to the total daily intakes collected for each of the
individuals in the sample and the adjusted distribution would
reflect total usual nutrient intake.



One potential shortcoming in the approach just described is
that it does not lend itself well to the scenario where a
considerable proportion of supplement consumers take supple-
ments only occasionally. Consider, for example, the case
where the population consists of three types of individuals:
those who never consume supplements, those who consume
supplements infrequently (e.g., once weekly or only when
feeling ill) and those who consume supplements regularly
(daily or every other day). If two nonconsecutive 24-h recalls
are administered to each sample individual, the observed dis-
tribution of nutrient intake from supplements will have a spike
at zero corresponding to the nonconsumers and to some of the
occasional consumers who by chance did not consume the
supplement during either of the 2 survey days. If the occasional



consumers make up a nonnegligible portion of the population,
then additional intake data that may allow separating the true
zeroes from the occasional zeroes are needed. In this light, a
propensity questionnaire of the type under pilot testing by the
National Cancer Institute (NCI) for collecting information on
the propensity to consume food items such as green leafy
vegetables might provide the information needed to separate
true nonconsumers from occasional consumers before analysis.



Reliable estimates of total usual nutrient intake distribu-
tions might reveal unexpected trends in nutrient intake. For
example, individuals who already appear to consume adequate
amounts of nutrients from supplement sources tend to be
regular supplement consumers as well (18,19). In fact, some
researchers have shown that indicators of a healthy lifestyle
are positively correlated to supplement consumption. Consis-
tent with these findings, a comparison of usual nutrient intake
distributions estimated for women aged 19–50 y from food
intake data alone or from food and supplement intake data for
vitamins C and E using NHANES III data shows the follow-
ing: as expected, mean intake is higher when nutrient intake
from supplement sources is added to nutrient intake from food
sources. The prevalence of nutrient intake as estimated by the
proportion of individuals with usual intake below the EAR is
only slightly smaller when total nutrient intake is considered.
That is, the left tail of the intake distribution, which corre-
sponds to individuals with relatively low nutrient intake, is not
noticeably pulled toward the center of the distribution when
supplement intake is accounted for. This is because individuals
with low nutrient intake from food sources do not tend to be
regular supplement consumers. The right tail of the distribu-
tion is stretched further out because individuals who already
show relatively high nutrient consumption from food are also
the ones that tend to consume supplements. Notice that, as a
consequence, the proportion of individuals whose intakes ex-
ceed the UL for the nutrient may also be larger.



The mean, SD and selected percentiles of the usual intake
distributions of vitamins C and E for the group of women aged
19–50 y obtained from the NHANES III survey are shown in
Table 1. The distribution of usual nutrient intake from food
sources was obtained using the ISU method. When supple-
ment intakes were also considered, the daily intakes were
adjusted using the rough approach that was described earlier.



The supplement intake data that are collected via fre-
quency questionnaires greatly limit the range of quantitative
analyses that can be conducted. The NHANES survey cur-



TABLE 1



Mean, SD and selected percentiles of the estimated usual
intake distributions of vitamin C and vitamin E considering



only food sources and food plus supplement sources,
for women aged 19–50 y1



Vitamin C Vitamin E



Food
Food �



supplements Food
Food �



supplements



Mean 90.7 135.8 8.4 22.7
SD 2.2 3.0 0.2 1.1
5th percentile 37.0 39.4 4.8 5.1
25th percentile 61.0 65.6 6.6 7.1
50th percentile 83.2 95.2 8.1 8.8
75th percentile 113.7 138.3 9.9 12.4
95th percentile 169.0 328.8 13.1 41.8



1 Source: NHANES III. N � 4840.



USUAL INTAKE DISTRIBUTIONS 605S



 at U
N



IV
E



R
S



IT
Y



 O
F



 W
A



S
H



IN
G



T
O



N
 H



E
A



LT
H



 S
C



IE
N



C
E



S
 LIB



R
A



R
Y



 on F
ebruary 20, 2013



jn.nutrition.org
D



ow
nloaded from



 





http://jn.nutrition.org/








rently in the field uses the same approach for collecting sup-
plement intake information that was used in NHANES III.
Improving the quality of the information obtained on supple-
ments should be possible even under the usual budgetary and
practical constraints. We do not trivialize the difficulties in-
herent in collecting accurate supplement intake data using
24-h recall-type instruments, in particular when interviews are
conducted over the phone. Together with supplement intake
information, it is also necessary to maintain a complex data-
base that includes nutrient content information on a large and
rapidly changing list of brands and products. Implementing
significant changes in a survey as complex as the integrated
NHANES survey is not trivial, and any potential modification
is typically pilot-tested before full implementation. Thus, we
propose that a pilot be conducted to evaluate the feasibility of
collecting replicate 24-h recalls to capture daily supplement
consumption. In addition, a propensity questionnaire similar
to the one that has been proposed by NCI should be used to
complement the supplement intake information provided by
the 24-h recalls.



Although the statistical methodology for analyzing data
collected via the 24-h recalls has been developed and vali-
dated, the methods that would take advantage of the addi-
tional information contained in the propensity questionnaires
are still under development. Dodd and collaborators at NCI
(K. W. Dodd, unpublished results, 2002) have proposed a
method for combining propensity and daily intake data to
adjust the intake distributions of infrequently consumed food
items such as fresh milk and leafy green vegetables. If supple-
ment intake patterns resemble those for food intake, then it
might be possible to use similar methods to estimate the usual
total nutrient intake distributions.



Estimating the usual intake distribution of foods



As in the case of supplements and some nutrients, disag-
gregated food groupings such as fresh fluid milk, green leafy
vegetables and red meat present specific challenges for analyses
because they are typically not consumed daily and some indi-
viduals never consume those foods at all. In this light, an
individual who reports no consumption of a certain food item
for a day may be a nonconsumer of the food or may just have
not consumed the food during that particular day. Thus, for
dietary components that are not consumed nearly daily, it is
necessary to extend the simple NRC (4) measurement error
model as follows. Suppose that now we let y*i denote the usual
food intake for individual i on consumption days, so that



y*i � E�Yij�i, Yij � 0�



Further, let pi denote the propensity to consume the food by
individual i, so that under the assumption that propensity to
consume and amount consumed are independent,



yi � y*i 	 pi



Under the assumption of independence, the usual food intake
distribution can be estimated as the product of two distribu-
tions: the usual food intake distribution obtained by consider-
ing only consumption days and the distribution of propensities
to consume the food in the group.



Nusser et al. (20) proposed a two-step approach for esti-
mating usual food intake distributions. First, the ISU method
is used to estimate the usual food intake distribution on con-
sumption days. The distribution of propensities to consume is
obtained from the observed frequencies of consumption during
the survey days. Propensity and amount consumed are assumed



to be independent, and the two distributions are combined in
a straightforward manner to obtain the usual food intake
distribution. The two drawbacks of this approach are that the
independence assumption does not hold for foods such as dairy
products, diet soda, alcoholic beverages and fruit (21) and the
estimation of the propensity-to-consume distribution is based
on the frequency information provided by the 24-h recalls.
Nusser et al. developed their approach using a subset of the
1985 CSFII that included four 24-h recalls for each individual
in the subsample. Four recalls provide information on the
height of the propensity-to-consume distribution at the points
0, 0.25, 0.5, 0.75 and 1, corresponding to individuals who
report consuming the item on 0, 1, 2, 3 or 4 d out of 4. From
these five observed frequencies, Nusser et al. estimated the
mass of the propensity-to-consume distribution at 51 equally
spaced points, using an approach based on entropy principles.
Dodd et al. (21) extended the Nusser et al. (20) approach and
proposed an approach that accounts for linear association
between the propensity to consume the item and the amount
consumed by the individual. For illustration we estimated the
distribution of propensity to consume dark green vegetables,
fresh apples, alcoholic beverages and diet soda for a subset of
743 women aged 25–50 y that provided at least four indepen-
dent 24-h recalls during the 1985 CSFII. The four estimated
distributions are shown in Figure 2. Note that the propensity-
to-consume distribution for alcohol in this population shows
three modes—at 0, 0.4 and 1. This suggests that in this
population, the two most typical alcohol consumption pat-
terns among alcohol consumers are to consume alcohol every
day or to consume it slightly less often than every other day. In
the case of dark green vegetables, the mode of the distribution
of propensity to consume in this population is at �0.25,
indicating that dark green vegetables tend to be consumed
about once every 4 d.



The design of more current surveys—and of the integrated
NHANES survey—calls for only two 24-h recalls for each
individual. Two recalls do not provide enough frequency in-
formation to reliably estimate the distribution of propensity to
consume the item. With the current design, the only heights
in the propensity distribution for which the data provide
information are those at the points 0, 0.5 and 1, corresponding



FIGURE 2 Estimated distribution of the propensity to consume
dark green vegetables, apples, alcoholic beverages and diet soda for
the subset of women aged 25 to 50 y of age who provided at least four
independent 24-h recalls during the 1985 CSFII (19).
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to individuals that report positive consumption on 0, 1 or 2 d
out of 2. Although the Nusser et al. (20) and the Dodd et al.
(21) approaches can in principle still be used to estimate the
propensity-to-consume distribution from these data, the result-
ing estimates are likely to be unreliable.



Researchers at NCI (Dodd, Krebs-Smith and others) have
initiated testing the efficacy of using a frequency-like instru-
ment as a measure of the propensity to consume. The feasi-
bility of using the propensity questionnaire in the integrated
NHANES is currently being pilot-tested (22). Dodd et al. are
developing statistical methods for estimating the usual intake
distribution of foods that are infrequently consumed, methods
that make use of both the propensity questionnaire and the
24-h recalls.



Adding a propensity questionnaire to improve the estima-
tion of the propensity-to-consume distribution is intuitively
appealing. The ISU method can produce a reliable estimate of
the usual food intake distribution on consumption days, but
the Nusser et al. (20) and the Dodd et al. (21) approaches
become less reliable as the number of 24-h recalls that are
collected on each individual in the sample decreases. Thus,
the propensity questionnaires have the potential to fill the
data gap that was opened when the number of 24-h recalls in
nationwide food consumption surveys was reduced from sev-
eral to only two. Adding the propensity questionnaire would
appear to be a cost-efficient and practical alternative to in-
creasing the number of 24-h recalls from two to at least four.



Although the discussion in this section has focused on the
problem of estimating food intake distributions, everything
said also applies to infrequently consumed nutrients such as
lycopene and �-cryptoxanthin. In addition, the discussion may
also apply to supplements, but not enough information on the
patterns of supplement consumption is available to conclude
this with certainty. Note that frequently consumed foods such
as aggregated groups (fruits and vegetables, grains, etc.) behave
like frequently consumed nutrients. The usual intake distribu-
tion of frequently consumed food items can be estimated using
replicate 24-h recalls and any of the adjustment methods
described previously; in these cases, the propensity to consume
the item is essentially 1 for all individuals, and the propensity
questionnaire does not add value for analyses.



Conclusions and recommendations



Reliable estimates of usual intake distributions of nutrients,
foods and other dietary components are needed by policy
makers, health professionals and researchers. For reasons of
cost and respondent burden, it is only practical to collect a few
daily intakes for a sample of individuals nationwide. Therefore,
the statistical methods that are used to obtain these distribu-
tion estimates must be powerful enough to tease information
out of scarce data.



Arguably, methods for estimating usual nutrient intake
distributions from nationwide food consumption data, at least
for nutrients consumed more or less regularly, are available and
perform well (9). Smaller sample sizes notwithstanding, it is
expected that the daily intake data that will be collected in the
combined NHANES survey via two independent 24-h recalls
will provide the information necessary to estimate the usual
nutrient intake distributions in various gender and life-stage
groups. The design of the survey permits implementation of
adjustment procedures such as the NRC (4) and the ISU (5)
methods for estimating usual nutrient intake distributions.
Although methods such as the ISU method for adjusting
distributions can effectively account for some of the charac-
teristics of dietary intake data, others—such as the over- and



underreporting of certain foods or the inaccuracies present in
the food composition databases—cannot be addressed satis-
factorily at this time. The estimates obtained from sophisti-
cated statistical approaches will only be as good as the data
that are used for estimation. It is undeniable that the problem
of underreporting of energy (1–3) can seriously bias any esti-
mate that is based on self-reported intakes. However, at this
time other methods for collecting dietary intake data on a
national scale are impractical. A more promising route might
be to continue with research on the individual factors that are
associated with under- or overreporting of certain foods so that
data can then be adjusted using the appropriate statistical
procedures.



Although the problem of estimating usual nutrient intake
distributions using food sources of nutrients alone is largely
solved, the same cannot be said for nutrient intake from
supplement sources. Supplement intake data that can be com-
bined with food intake data for estimation of adjusted distri-
butions of total nutrient intake are not available and will not
be collected during the first phase of the integrated NHANES
survey. As in NHANES III, the integrated NHANES survey
that is currently in the field will administer a frequency ques-
tionnaire to sample individuals, with the goal of capturing
usual or habitual supplement consumption. Unfortunately,
several recent studies showed that frequency questionnaires,
although effective for qualitative intake assessment, are ill-
suited to the type of quantitative assessment discussed here.
Thus, it is important to consider pilot-testing alternative data
collection systems for supplements for possible implementa-
tion in the integrated NHANES survey in the future. The
supplement data collection system should include daily sup-
plement intake information (obtained via two independent
24-h recalls) and also information on the propensity to con-
sume supplements in the groups of interest. The latter can be
obtained by administering propensity questionnaires that may
be similar in design to the frequency questionnaires currently
in use. Thus, we recommend that the performance of the
combined 24-h recalls (e.g., food plus supplements) and pro-
pensity questionnaires be investigated. The challenges inher-
ent in such a strategy are many. For example, whether the
current 5-pass method for collecting food intake data is also
adequate for supplements is not known. Furthermore, updating
and then maintaining a supplement composition database,
given the range of products available to consumers and the
speed with which they are introduced into the market, is a
daunting task.



Finally, we also discussed the issue of estimating usual
intake distributions of foods and distinguished between fre-
quently and rarely consumed food items. Methods for estimat-
ing usual food intake distributions are available (20,21). Those
methods, however, were developed when 	2 daily intakes
were recorded for at least some individuals participating in
nationwide food consumption surveys. For only two observa-
tions for each individual in the sample, the reliability of
estimates based on the methods mentioned above is in doubt.
Researchers at NCI are developing the methodology needed to
combine food intake information obtained via 24-h recalls
with propensity to consume the food obtained from a propen-
sity questionnaire (Dodd, unpublished results, 2002). As for
supplements and other episodically consumed items, distin-
guishing the nonconsumers of the food from the occasional
consumer is important and cannot be achieved with the in-
formation provided by the two independent 24-h recalls that
will be collected in the integrated NHANES survey. Thus, in
lieu of significantly increasing the number of 24-h recalls to be
administered to each sample individual, a propensity question-
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naire to complement the two 24-h recalls may be the practical
and most effective solution.



In closing, it is important to point out that nationwide food
consumption surveys such as NHANES will always provide
limited information about very specific population subgroups
and about infrequently consumed food items. The sample sizes
in the combined NHANES survey are unlikely to permit
reliable estimation of intake distributions in, for example,
pregnant or lactating African-American women who partici-
pate in the Women, Infants, and Children program. It is also
very unlikely that the survey will permit estimation of the
usual intake distribution of, for example, oysters. Food items
that are consumed infrequently will most likely not be in-
cluded in the propensity questionnaires and their consumption
will be reported as zero in most of the 24-h recalls. Therefore,
general surveys such as NHANES should not be expected to
provide the information that would be needed for every task.
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A Semiparametric Transformation Approach to 
Estimating Usual Daily Intake Distributions 



S. M. NUSSER, A. L. CARRIQUIRY, K. W. DODD, and W. A. FULLER 



The distribution of usual intakes of dietary components is important to individuals formulating food policy and to persons designing 
nutrition education programs. The usual intake of a dietary component for a person is the long-run average of daily intakes of that 
component for that person. Because it is impossible to directly observe usual intake for an individual, it is necessary to develop 
an estimator of the distribution of usual intakes based on a sample of individuals with a small number of daily observations 
on a subsample of the individuals. Daily intake data for individuals are nonnegative and often very skewed. Also, there is large 
day-to-day variation relative to the individual-to-individual variation, and the within-individual variance is correlated with the 
individual means. We suggest a methodology for estimating usual intake distributions that allows for varying degrees of departure 
from normality and recognizes the measurement error associated with one-day dietary intakes. The estimation method contains 
four steps. First, the original data are standardized by adjusting for nuisance effects, such as day-of-week and interview sequence. 
Second, the daily intake data are transformed to normality using a combination of power and grafted polynomial transformations. 
Third, using a normal components-of-variance model, the distribution of usual intakes is constructed for the transformed data. 
Finally, a transformation of the normal usual intake distribution to the original scale is defined. The approach is applied to data 
from the 1985 Continuing Survey of Food Intakes by Individuals and works well for a set of dietary components that are consumed 
nearly daily and exhibit varying distributional shapes. 



KEY WORDS: Continuing Survey of Food Intakes by Individuals; Density estimation; Dietary status; Measurement error models. 



1. INTRODUCTION 



The U.S. Department of Agriculture (USDA) has been re- 
sponsible for conducting periodic surveys to estimate food 
consumption patterns of households and individuals in the 
United States since 1936. Because dietary intake data from 
these surveys are used to formulate food assistance pro- 
grams, consumer education efforts, and food regulatory ac- 
tivities, it is crucial that appropriate methodologies be used 
in the analysis of these data. An important concept in an- 
alyzing food consumption data is usual intake, defined as 
the long-run average of daily intakes of a dietary compo- 
nent by an individual. From a statistical perspective, the 
usual intake of individual i is defined to be 



Yi = E{Yij i}, 



where Y is the intake of a dietary component on day j by 
individual i. This article outlines a methodology to estimate 
usual intake distributions of dietary components consumed 
on a nearly daily basis (e.g., nutrients, cholesterol, energy) 
from 24-hour recall dietary intake data. 



To assess usual intake, daily dietary intakes are often 
collected from individuals for a number of days. If an in- 
dividual's mean daily intake for a particular dietary com- 
ponent is used as an indication of his or her usual intake, 
then the variance of the mean intakes contains some within- 
individual variability and hence is greater than the variance 



S. M. Nusser is Assistant Professor, A. L. Carriquiry is Associate Pro- 
fessor, K. W. Dodd is Research Assistant, and W. A. Fuller is Distin- 
guished Professor, Department of Statistics, Iowa State University, Ames, 
IA 50011. This research was partly supported by Research Agreement 
No. 58-3198-9-032 and Cooperative Agreement 58-3198-2-006 between 
the Agricultural Research Service, U.S. Department of Agriculture, and 
the Center for Agricultural and Rural Development, Iowa State Univer- 
sity. Carriquiry's work was also partially funded by research grant no. 
N000149610279 from the Office of Naval Research, U.S. Department of 
Defense. The authors thank Phillip Kott, Patricia Guenther, and the refer- 
ees for useful comments. They also thank George Battese, who participated 
in our original research on this topic. 



of the usual intakes. Other parameters of the distribution 
of mean intakes may also differ from the parameters of the 
distribution of usual intakes. Because of these problems, 
using the distribution of the mean of a few days as an esti- 
mate of the usual intake distribution can lead to erroneous 
inferences regarding dietary status. 



Nusser, Battese, and Fuller (1990) suggested a measure- 
ment error model, where the observed daily intake of an in- 
dividual is equal to the usual intake for that individual plus 
a measurement error, and the second and third moment of 
an individual's measurement errors are modeled as a func- 
tion of the individual's usual intake. Moment methods are 
used to estimate the parameters of a specified distribution 
(e.g., Weibull). Although this approach has the advantage 
of working with the data in the original scale, it requires 
several parametric assumptions and is difficult to implement 
for dietary components that exhibit extreme behavior, such 
as vitamin A. 



A second approach to estimating the usual intake distri- 
bution involves transforming the daily intakes so that the 
transformed values approximately follow a normal distribu- 
tion. The National Research Council (1986) recommended 
this approach and suggested a log transformation. As we 
explain in Section 2, log transformations or simple power 
transformations do not consistently produce transformed 
data that are normally distributed. 



The problem of estimating the distribution of usual in- 
takes can be formulated as the problem of estimating the 
distribution of a random variable that is observed subject 
to measurement error. Mendelsohn and Rice (1982) pre- 
sented an example of estimation of a density given observa- 
tions contaminated with normal error. Fan (1991), Stefanski 
(1990), and Stefanski and Carroll (1990, 1991) studied ker- 
nel estimation of an unknown density given observations 
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subject to independent additive measurement error with a 
known distribution. These authors also provided references 
to earlier work. Stefanski and Bay (1996) described a sim- 
ulation extrapolation estimation procedure for the cumula- 
tive distribution function of observations subject to additive 
normal errors. 



Our approach differs somewhat from the kernel estima- 
tors in that we assume that a transformation exists such that 
both the original observations and the measurement errors 
are normally distributed. The transformation is a grafted 
cubic equation fit to a power of the original data. This 
fitting can be considered a semiparametric version of the 
Lin and Vonesh (1989) procedure. It is also related to the 
spline approach for estimating the distribution function (see 
Wahba 1975 and Wegman 1982). The transformed daily in- 
take data are assumed to follow a measurement error model, 
and normal theory is used to estimate the parameters of the 
model. An estimated inverse transformation carries the nor- 
mal usual intake distribution back to the original scale and 
defines the distribution of usual intakes. The data set dis- 
cussed in this article and information on obtaining software 
to implement our procedure for estimating usual intake dis- 
tributions have been submitted to STATLIB. 



2. APPLICATION TO CSFII DATA 



2.1 The CSFII Data 



The data for this study are a subset of the data from 
the 1985 Continuing Survey of Food Intakes by Individuals 
(CSFII) conducted by the U.S. Department of Agriculture 
(1987). Daily dietary intakes were collected from women 
between age 19 and 50 and from the preschool children of 
the women at approximate 2-month intervals over the pe- 
riod April 1985-March 1986. Twenty-four-hour recall data 
were collected by personal interview for the first day and 
by telephone whenever possible for subsequent days. The 
sample was a multistage stratified area probability sample 
from the 48 coterminous states and was designed to be self- 
weighting. Because of the relatively high attrition rate for 
the 6-day sample, the USDA constructed a 4-day data set 
for analyses which consisted of the first day of dietary in- 
takes for all individuals who provided at least 4 days of 
data, plus a random selection of three daily intakes from 
the remaining 3, 4, or 5 days of available data. Weights 
were developed to adjust for nonresponse, and the analyses 
of this article are constructed on the weighted data. 



We analyze a subset of the 4-day data set containing di- 
etary intakes for 737 women age 25-50 who were respon- 
sible for meal planning within the household and who were 
not pregnant or lactating during the survey period. Because 
of the time separation of the observations, we assume the 
four observations on each individual to be independent ob- 
servations on that individual. The dietary components cal- 
cium, energy, iron, protein, vitamin A, and vitamin C were 
selected for analysis because of their nutritional importance 
and because of their varying distributional behaviors. 



The report of the National Research Council (1986) pro- 
vides a review of factors that influence observed daily in- 
takes. Some effects, such as errors in reported food intake 



and translation of food intake to nutrient intake, are not 
estimable from the data of our study. The effect of other 
factors, such as day of the week, season (month), interview 
method, and interview sequence, can be investigated. 



2.2 Method Overview 



We begin with a set of survey responses on daily intakes 
for n individuals. A subset of the individuals must report 
more than one daily intake. In our application, four days of 
intakes are available for each individual. Associated with 
each individual is a survey weight. 



The method for estimating usual intake distributions con- 
sists of several steps. First, the intake data are adjusted to 
remove nuisance effects, such as day of week and interview 
sequence, which are known to influence daily consumption 
levels. Because intakes recorded on the first sample day are 
believed to be the most accurate, the daily intakes for each 
sample day are adjusted to have a mean and variance equal 
to that of the first sample day (day 1). Other reference stan- 
dards, such as the grand mean, can be used. These initial 
adjustments are described in Section 2.3. 



The survey weights for the observations reflect the se- 
lection probabilities and are incorporated into the analy- 
sis by creating an "equal weight sample" from the origi- 
nal sample (Sec. 2.4). The empirical cumulative distribution 
function is constructed with the nk weighted observations, 
where k is the number of observations per individual. Then 
nk equal weight observations are defined to be the values 
of the inverse empirical cumulative distribution function 
associated with the nk equally spaced probability values, 
(nk)- 1(i-.5), i = 1, 2, ..., nk. 



The third step involves transforming the adjusted equal 
weight daily intake data to approximate normality using 
a combination of a power function and a grafted polyno- 
mial function. Some dietary components exhibit sizable de- 
viations from normality when transformed with a simple 
power function, and the grafted polynomial step provides 
the flexibility required to transform such components to ap- 
proximate normality. The semiparametric transformation is 
described in Section 2.5. 



In the fourth step, the parameters of the usual intake 
distribution are estimated in the transformed scale using a 
measurement error framework (Sec. 2.6). The measurement 
error model assumes that transformed daily intakes exhibit 
heterogeneous within-individual variances, and parameters 
of the error distribution are estimated. 



In the final step of the procedure, the estimated usual 
intake distribution in the original scale is obtained by ap- 
plying a back transformation to the normal scale estimated 
usual intake distribution (Sec. 2.7). The back transformation 
is estimated by modifying the nonlinear forward transfor- 
mation so that the back transformation is appropriate for 
the distribution of individual means. 



The steps in the procedure are designed to address the 
different features of daily dietary intake data, including nui- 
sance effects, survey weights, nonnormality, measurement 
error, and heterogeneous variances. The sequence in which 
the issues are addressed and the methods applied is the 
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product of our attempts to produce a procedure with ap- 
plicability to a wide range of data possessing these charac- 
teristics. 



2.3 Initial Adjustments 



We begin by adjusting the data for nuisance effects. The 
adjustment variables will vary with each study. In the case 
of the 1985 CSFII data, the daily intakes were examined us- 
ing least squares methods to determine whether day of the 
week, month, interview mode (telephone or in-person), and 
interview sequence (first, second, third, or fourth interview) 
effects were important. Month and interview sequence are 
confounded to a large degree, because the first interview 
was conducted at nearly the same point in time for all in- 
dividuals. 



Let Woij denote the observed intake for the ith individ- 
ual on the jth day in the interview sequence plus a constant 
equal to .0001 times the sample mean for the nutrient. This 
small amount is added to avoid problems in subsequent pro- 
cedures that depend on the derivative of a power of the data, 
which can be infinite when evaluated at zero. Consider the 
sample of n individuals, and let the ith individual have a 
weight wi, where En=- w2 = 1. 



Because dietary intake data are often skewed, a power 
transformation is applied to the data to make the distri- 
butions of the observed data more nearly symmetric. To 
simplify computations, -y is selected by a nonlinear least 
squares grid search procedure. The original observations 
Woij are used to estimate the power -y by minimizing the 
error sum of squares, 



n k 



EW, E (Uij 
_ 00 _ 



01Woj),(1 
i=1 j=1 



over a grid of values of -y, where Uij is the normal score for 
the ijth observation and f0 and i1 are estimated for each 
value of -y. The normal scores are computed as 



uij = [( 8)si; (3 nk )] (2) 



where @ is the standard normal distribution function and sij 
is the rank of the ijth observation. The grid of values for 
ty is [1, (1.5)-1, (2.0)-1, ..., (10)-1, log], where log denotes 
the natural logarithm and corresponds to -y = 0. 



Once the power has been selected, a model containing 
day of the week, interview mode, and interview sequence 
as additive classification variables is fit by weighted least 
squares to the power-transformed observations, WO7ij, where 
the weights in the regression are the sampling weights. In- 
terview mode is not significant for any dietary component. 
Day-of-week effects are significant for energy (p < .001) 
and protein (p < .05) intakes, primarily because of higher 
consumption on weekends for both dietary components. Se- 
quence effects (confounded with month effects) are signif- 
icant at the ce = .001 level for calcium, energy, iron, and 
protein intakes and are principally attributable to higher in- 



take levels on the first interview day versus the other 3 
days. 



Because of these results, data were adjusted for weekday 
and interview sequence effects. Let ZOij = W%ij represent 
the power-transformed observed intake for the ith individ- 
ual on the jth day. The ijth observation adjusted for week- 
day and interview sequence effects is Zij = Z( Zo.izoijl 
where Z0.1 is the mean of the power-transformed observed 
intakes for the first interview day and Z2ij is the predicted 
intake from the regression for the ith individual on the jth 
day. The ratio adjustment is used to reduce the probability 
that adjusted intake values are nonnegative. Should negative 
adjusted intakes occur, they are set equal to zero. The data 
are adjusted to the mean of the first interview day (rather 
than the grand mean), because the data are believed to be 
more accurate on the first interview day than on subsequent 
days. 



It is well established that the characteristics of responses 
in a repeated survey are a function of the time in sample 
at which a respondent is observed (see, e.g., Bailar 1975). 
Our initial regression adjustment modifies the data so that 
there is no sequence effect in the mean of the intake dis- 
tributions for the different days. Because of the possibility 
of other higher-order time-in-sample effects, we standard- 
ized the sample variance of transformed observations for 
the second, third, and fourth times in sample to the sample 
variance observed on the first day. The adjusted observa- 
tions in the original scale are defined by 



Y= [k-1 + S.-1S.l(Zij ( 3)j)l/3 



where i = 1,2,...,n individuals, j = 1,2,... ,k days, 
S= (nr-1)-1 EnZ (Zij-_.j)2, and .j =n-1Z En1 Zij . 
For a very few observations (fewer than four for every com- 
ponent), the transformation is modified near zero to guar- 
antee nonnegative adjusted data. 



The among- and within-individual standard deviations 
for the adjusted intakes in original units as defined in 
(3) are presented in Table 1. These statistics indicate that 
there is considerable within-individual variability relative 
to among-individual variability. The ratios of within- to 
among-individual variances are similar to those for com- 
parable dietary components reported by the National Re- 
search Council (1986). Vitamin A is unusual in that there 
is one very large observation and a few other large ob- 
servations that are responsible for the very large within- 
individual variance. Table 1 also contains the estimator of 
skewness, where skewness is defined as the third central 
moment divided by the cube of the standard deviation. The 
skewness coefficient indicates that for most dietary compo- 
nents, an assumption of normality is unreasonable. In addi- 
tion, analyses not shown here indicate that within-individual 
standard deviations are positively correlated with individual 
means. 



2.4 Incorporating Survey Weights 



Our estimation scheme is designed to handle samples 
with unequal weights. To apply classical equal-weight 
methods for the estimation of the components of variance 
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Table 1. Sample Moments for Adjusted Observed Intakes Y,j in (3) 



Ratio of within- to 
Dietary Among-individual Within-individual among-individual 



component Mean std. dev. std. dev. variances Skewness 



Calcium (mg) 622.3 253.9 319.1 1.58 1.35 
Energy (kcal) 1,683.4 450.4 585.1 1.69 1.10 
Iron (100 mg) 1,105.3 294.9 482.0 2.67 1.76 
Protein (10 g) 668.8 157.5 270.5 2.95 1.38 
Vitamin A (JLg/RE) 801.0 570.9 1,401.0 6.02 11.75 
Vitamin C (10 mg) 792.5 408.6 625.6 2.34 1.87 



NOTE: Data are adjusted for day-of-week and interview sequence effects. 



model, we use the empirical cumulative distribution func- 
tion to create an equal-weight sample from the adjusted 
unequal-weight sample. The first step in creating the equal- 
weight sample is to construct an empirical cumulative dis- 
tribution function from the nk observations, defined by 



n k 



Fy (a) W Zwi IY3a) 
i=1 j=l 



where Iyt, (a) is the indicator function with 



Iy3(a) = 1 if Yi* < a, 
= 0 otherwise. 



A continuous function, denoted by Fy(a), is created by 
connecting the midpoints of the rises in the steps of Fy (a). 
This function is used to define nk observations of an equal- 
weight sample that gives nearly the same distribution func- 
tion as that of the adjusted data. The equal-weight obser- 
vations are defined by Yij = F1[(nk)->(sij - .5)] for 
i = 1,2,.. ., nandj = 1, ..., k, where sij is the rank of the 
Yi*. These adjusted, equal-weight intakes Yij are hereafter 
called daily intakes. 



2.5 Semiparametric Transformation to Normality 



The first step to transforming the daily intakes to normal- 
ity is to calculate normal scores Uij, as defined in (2) for the 
Yij. The pairs (Uij, Yij) are used to estimate a semiparamet- 
ric function that transforms the daily intakes into approx- 
imately normal variables. The transformation function is 
fit to the data in two phases. First, a power is determined 
that produces observations that are close to normally dis- 
tributed by minimizing (1), where wi -1 and Yij replaces 



Woij. Let the selected power be denoted by a . The inverses 
of the powers of the first transformation step for the CSFII 
data are given in the first column of Table 2. 



In the next phase of the normality transformation, a 
grafted cubic polynomial is fit to the (Uij, Yi ) pairs, min- 
imizing deviations in the Y direction. Let the join points 
for the polynomial be Bl, B2,..., Bp. The values of B1 
and Bp are chosen such that two data points are outside of 
each of the outside join points. For our data, B1 and Bp 
are -3.26 and 3.26. The values B2,..., Bp_1 are defined 
such that the intervals (Bi, Bi+1), i = 1, 2, ... .,p- 1 are of 
equal length. The function is constructed to be linear for 
Uij < B1, linear for Uj > Bp, and cubic in the intervals 
(Bi, Bi+ 1), i = 1, 2,. .., p - 1, with continuous first and sec- 
ond derivatives at the join points. (See, e.g., Fuller 1976, p. 
393, for a description of the function.) The fitted grafted 
polynomial function is also constrained to be monotone in- 
creasing. At least three join points are included in the model 
for each component. The number of parameters, p, in the 
grafted polynomial model is equal to the number of join 
points. 



The number of join points for the grafted cubic is chosen 
to be the minimum number of join points (up to 12) required 
to make the value of the Anderson-Darling test statistic 
for normality less than .58 when applied to the data trans- 
formed by the semiparametric function. The Anderson- 
Darling test was chosen as a "goodness-of-fit" criterion to 
measure the distance between the distribution of the trans- 
formed observations and the normal distribution (see An- 
derson and Darling 1952 and Stephens 1974). The value 
of .58 is approximately the 15% point of the distribution. 
Using the 15% point as the cutoff is analogous to adding a 
variable to a regression when the F statistic exceeds 2 and 
is also analogous to using the Akaike information criterion 



Table 2. Statistics for the Semiparametric Transformation to Normality 



t for 
Dietary Inverse of Anderson-Darling for Number of join heterogeneous t for 



component power fitted valuesa points variancesb linear effectb 



Calcium 3.5 .28 3 2.72 -1.80 
Energy 2.0 .47 4 2.46 -.02 
Iron 2.5 .40 5 2.22 -.50 
Protein 2.0 .21 6 2.01 .57 
Vitamin A 5.5 .36 11 3.28 -.96 
Vitamin C 3.5 .34 8 2.06 -1.47 



a Reject at the 15% level if the Anderson-Darling statistic is greater than .58. 
b Reject the null hypothesis of zero slope at the 5% level if I ti > 1.96. 
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Figure 1. Plot of Grafted Polynomial for Iron. The plot of power- 
transformed daily intakes versus normal scores is represented by points. 
The smooth line is the fitted grafted polynomial. Vertical dashed lines 
designate join points of the grafted polynomial. 



(AIC) (see Sawa 1978 and Sawa and Hiromatsu 1973). The 
Anderson-Darling statistic computed for the daily intake 
data transformed with the grafted polynomial is given in 
the second column of Table 2. The number of join points 
is given in the third column of Table 2. 



Figure 1 contains a plot of the (2.5)-1 power of the iron 
daily intakes against the normal scores. The S-shaped plot 
indicates that a simple power transformation is not adequate 
to transform the plot into a straight line. Note that there are 
2,948 observations in the figure, with 2 to the left of the left 
join point and 2 to the right of the right join point. Because 
the function is constrained to be linear beyond the outside 
join points and because the function has a continuous sec- 
ond derivative, it is possible that the fitted function will not 
pass through the extreme observations. 



Although the total set of observations is transformed to 
normality, it does not follow automatically that the indi- 
vidual means are normally distributed. The normality of 
individual means is of interest, because their distribution 
is more closely related to the distribution of usual intakes 
than that of the original observations. Because of this, as 
an additional check on the transformation, the Anderson- 
Darling statistic was computed for the individual means of 
the transformed daily intakes. In no case was the statistic 
significant at the 10% level. 



To check the hypothesis that the within-individual vari- 
ances calculated from the transformed daily intake data are 
constant over individuals, let 



k 



Ai =(k - )-1 ij xi.) 
j=1 



and 
n 



M4= 3A2- [1 + 2(k -1)-1]-1Ai, (4) 



where Xij is the transformed value for individual i on day 
j,Xi. = k-1 jk=1 Xij,A =n1 Zn =1 Ai, and k = 4 is the 
number of observations per individual. If the transformed 
observations are normally distributed with homogeneous 
variances and four observations per person, M4 estimates 
3, the fourth moment of the standard normal distribution. 
The approximate variance is 



V(M4) = 9n (k - + 2(k -)-l]-2 



x [24 (k 
- 



1 y (k ? 1 )] 



- [2(k - 1) + (k - 1)2]2, 



which is equal to .039077 for n = 737 and k = 4. The 
values of the test statistic 



[V(fy4)] 
-1,2 



(fj4 - 3) 



calculated using the transformed daily data is given in Ta- 
ble 2 under the heading "t for heterogeneous variances." 
This ratio is greater than 1.96 for all nutrients analyzed, 
indicating that the within-individual variances vary across 
individuals. 



To investigate the hypothesis that the heterogeneity of 
within-individual variances in the transformed space is due 
to a relationship between within-individual standard devia- 
tions and individual means, the model Ail/2 = 0 + f31Xi. 
was fit using least squares. The t statistics for testing the 
hypothesis that 31 = 0 are presented in column 4 of Table 
2. The statistic for calcium is -1.80, whereas the remaining 
statistics are less than 1.5 in absolute value. When within- 
individual standard deviations are plotted against individual 
means, no obvious patterns are revealed. Therefore, it was 
decided to complete the analysis for all nutrients under the 
assumption that the variances are not related to the means. 



2.6 Estimating the Usual Intake Distribution in the 
Normal Scale 



A measurement error model is used for estimating the 
distribution of usual intakes in the normal scale. Let 



xij= xi + uij, (5) 



where xi NI(uxa, as),uij N(O, N o), 2 
2i (IA, CA): Xi 



is the unobservable usual intake value for individual i in the 



Table 3. Estimated Moments for Normal-Scale Daily Intakes, X,, 



Among- Average within- Within- Variance of 
individual individual to among- individual 



Dietary variance variance ratio variances 



component Q>2 AA A aA 



Calcium .367 .635 1.73 .072 
Energy .378 .626 1.66 .064 
Iron .318 .685 2.15 .069 
Protein .273 .728 2.67 .070 
Vitamin A .261 .742 2.84 .1 19 
Vitamin C .320 .684 2.14 .064 
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Figure 2. Estimated Densities of Usual Intakes (Usual; Solid Line), 
4-Day Individual Means (Mean; Long-Dashed Line), and 1-Day Intakes 
for Vitamin C (Daily; Short-Dashed Line). 



normal scale, uij is the unobservable measurement error 
for individual i on day j in the normal scale, the uij are 
independent given i, and xi and ulj are independent for all 
i,l, and j. 



On the basis of the empirical analyses presented in Ta- 
ble 2, we permit heterogeneous within-individual variances. 
The errors uij represent variation of two kinds: the day- 
to-day variability in the true amounts eaten by individual 
i and the difference between the true amount eaten and 
the amount reported for an individual. It is believed that 
the day-to-day variance for an individual is much larger 
than the variance of the reporting error. The transformed 
daily intakes Xij have ,ux 0 and a>-1. Under model 
(5), the conditional distribution of Xij, given (xi, ca2) is 
N(xi, 2I). However, the unconditional distribution is not 
normal if CA > 0. We conduct our analysis under the oper- 
ational assumption that the initial transformation produces 
xi and uij satisfying (5). Under (5), the individual means, 
Xi. = k-1 Ej=1 Xij, are independent (0, ax) random vari- 
ables, where crk = 52 ? k11,UA. For our purposes, it is 
not necessary to specify a form of the distribution of the 
individual error variances, because we will only use the 
variance of the distribution of variances. 



Table 4. Estimated Moments for Usual Intakes 
in the Original Scale, yw 



Dietary Standard 
component Mean deviation Skewness 



Calcium (mg) 622.4 240.0 .84 
Energy (kcal) 1,684.5 443.9 .54 
Iron (100 mg) 1,107.4 305.9 .75 
Protein (10 g) 670.0 160.1 .52 
Vitamin A (kg RE) 822.0 536.3 2.64 
Vitamin C (10 mg) 791.2 397.2 1.08 



Estimators for the moments are 
n 



=n- 1E X I-x X11 



i=1 



n 



= (n-1 1E (Xi. -x), 
i=l1 



n *k 



AA = [n(k - 1)]-1 E E (Xij -X7,.)21 



i=1 j=1 



=2 = -k-IAA 



and 
n 



A= n-'[1 + 2(k - 1)-i] ZAi - A2, 
i=l1 



where Ai and A are defined in (4). The within- and among- 
individual variances for the transformed data are given in 
Table 3. In all cases the sum of the within-individual and 
among-individual variances is close to 1, because the trans- 
formed data have mean 0 and variance 1. The average of the 
within-individual variances exceeds the among-individual 
variance for all dietary components. The ratio of within- 
to among-individual variance is smallest for energy with a 
value of 1.66 and is largest for vitamin A with a ratio of 
2.84. The ratios of within- to among-individual variance of 
Table 3 are similar to the corresponding ratios computed 
from the standard deviations in original scale of Table 1, 
with the exception of vitamin A. In the original scale, the 
vitamin A data are skewed, the individual standard devi- 
ations are positively correlated with the individual means, 
and a few very large observations made a large contribution 
to the within-individual variance in the original scale. 



The last column of Table 3 contains an estimate of the 
variance of the individual variances, denoted by &2. The 
coefficients of variation of the individual variances are 
36%-46%. 



2.7 Estimated Usual Intake Distribution in the 
Original Scale 



Under model (5), the conditional distribution of observed 
daily intakes in the normal scale for all individuals with a 
particular usual intake, say xi, is the average of all normal 
distributions with common mean xi and variance A, where 
A -(,A, CA ). Thus daily intake in normal scale is the sum 
of xi and u, where 



E{(u u2 U, I4)IX = X= (0, PA, 3_2 + 3c2) 



and the distribution of u is symmetric about 0. 
Let ji denote the usual intake in original scale for all 



individuals with usual normal intake xi, and let g denote 
the transformation taking the adjusted observed intakes Y 
to normality. Then 



jji = E{YIx = x}= E{g-1(x ? u)Ix = x}= hx) 
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Table 5. Sample Moments for Individual 4-Day Means in the 
Original Scale, Calculated From Daily Intakes, Y,J* 



Dietary Standard 
component Mean deviation Skewness 



Calcium (mg) 622.3 295.3 1.18 
Energy (kcal) 1,683.4 532.9 .70 
Iron (100 mg) 1,105.3 387.7 1.17 
Protein (10 g) 668.8 208.4 .89 
Vitamin A (,Lg RE) 800.8 864.9 7.17 
Vitamin C (10 mg) 792.4 515.6 1.24 



NOTE: Data are adjusted for day-of-week and interview sequence effects. 



The transformation h is estimated by approximating the 
conditional expectation of Y at a set of values of x and then 
fitting a grafted polynomial to the (y, x) pairs. The set of x 
values is a set of 400 values such that the first five moments 
of the points match the first five moments of a N (0, a^') dis- 
tribution. At each value of x, we use a nine-point approx- 
imation to the distribution of u. The distribution of u has 
mean zero and a variance with estimated mean &J. and esti- 
mated variance of variance equal to AA. Nine points, cl, and 
nine weights, Wl, where E w- 1, are constructed such that 
the first five moments of the discrete nine-point distribution 
match the first five estimated moments of the conditional 
distribution of x + u conditional on x. For each of the 400 
values of x, the usual intake in the original scale is approx- 
imated by i. _= E 4_wlg1 (Si + cl), where x is the ith 
value in normal scale and cl and W, (1 = -4,-3, ... , 4) are 
the values and weights for the nine-point approximation to 
the distribution of u. The 400 y values provide a 400-point 
estimator of the usual intake distribution. A grafted cubic 
created from the pairs ( denoted by h, is an estimator 
of the transformation of the normal x into the usual intake 
y in the original scale. 



Densities for the dietary components were constructed 
by multiplying the derivative of h- (y) by the normal or- 
dinate for the usual intake density of the component in the 
normal scale. The estimated density of usual intakes for vi- 
tamin C is the solid line in Figure 2. Also in the figure is the 
estimated density for daily intakes, identified by the short 
dashed line, and the estimated density of the 4-day means, 
identified by the long dashed line. The estimated density 



for 4-day means was approximated by applying the same 
smoothing algorithm used to estimate the distribution func- 
tion of daily intakes to the individual means. The skewness 
in the density of the mean declines as the number of daily 
intakes in the mean increases. 



Table 4 contains the mean, variance, and skewness coeffi- 
cient for the estimated usual intake distributions calculated 
from the 400-point approximation. The estimated means of 
the usual intakes are very close to the means for the daily 
intakes adjusted for nuisance effects and time-in-sample ef- 
fects (Yi*) presented in Table 1. Also, the estimated stan- 
dard deviations of usual intakes are close to the among- 
individual standard deviations of Table 1 for calcium, en- 
ergy, iron, and protein. This is to be expected, because the 
estimates of Table 1 are the sample moment estimators of 
the same quantities. The estimated standard deviations of 
usual intakes for the two vitamins differ considerably from 
the direct moment estimators of Table 1. As previously 
mentioned, the original distributions for the vitamin daily 
intakes are very skewed and, hence the original sample mo- 
ments are heavily dependent on a few large observations. 
The effect on the large observations is reduced for estima- 
tors constructed using our procedure. 



Comparison of the sample moments for usual intakes in 
Table 4 with the estimated moments for individual means 
(Table 5) indicates that the distribution of 4-day means is 
a poor estimate of the usual intake distribution. For all di- 
etary components, the standard deviation and skewness co- 
efficient are larger for the mean distribution than for the 
estimated usual intake distribution. 



Table 6 contains estimated percentiles for the usual in- 
takes of six dietary components. The percentiles were com- 
puted with the estimated transformation function using the 
percentiles of the estimated distribution of usual intakes in 
normal scale. For example, the estimated mean and vari- 
ance of vitamin C usual intakes in the normal scale are 
zero and .320. Therefore, the estimated 95% point in the 
normal scale is 8,xr-1(.95) = .566 x 1.645 = .931. Using 
the estimated h transformation, the 95% point of the usual 
intake distribution in original scale is 154.7 mg. 



A balanced repeated replication method was used to esti- 
mate the standard deviations of the estimated percentiles 



Table 6. Estimated Percentiles for Usual Intake Distributions in the Original Scale 



Percentile 



Component .01 .05 .10 .50 .90 .95 .99 



Calcium (mg) 208 292 345 590 942 1,065 1,326 



(14) (13) (13) (13) (32) (41) (64) 
Energy (kcal) 796 1,023 1,151 1,648 2,262 2,469 2.911 



(38) (34) (33) (36) (56) (66) (95) 
Iron (100 mg) 527 670 751 1,074 1,504 1,657 1,998 



(27) (26) (26) (30) (52) (63) (91) 
Protein (10 g) 349 431 477 658 878 951 1,108 



(18) (17) (17) (15) (21) (26) (39) 
Vitamin A (Mg RE) 218 312 372 671 1,449 1,837 2,876 



(16) (18) (19) (35) (134) (200) (442) 
Vitamin C (10 mg) 184 287 356 717 1,328 1,547 2,014 



(16) (19) (21) (33) (61) (72) (97) 



NOTE: Values in parentheses are estimated standard errors. 
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Figure 3. Plot of Function Used to Generate Original Scale Daily 
Intakes From Normal Daily Intakes for Simulation. 



(see, e.g., Fay 1989 and Wolter 1985). The sample is a 
stratified sample with two primary sampling units per stra- 
tum. Some strata were combined to create a sample of 
48 strata, each with two primary sampling units. Sixteen 
replicates were created based on orthogonal contrasts. Each 
replicate contains one-half of the data. All operations, in- 
cluding the power and grafted polynomial estimation, were 
carried out for each of the replicate samples. The esti- 
mated standard errors of the estimated percentiles, given 
below the estimates in Table 6, are the square roots of 
V{Oo} = (16)-' Zjj(Oi - Oo)2, where 0i is the estimated 
percentile for the ith replicate and 00 is the estimate for the 
original sample. 



3. MONTE CARLO STUDY 



We conducted a Monte Carlo study to evaluate the per- 
formance of the estimation procedure described in Section 
2 and to compare our method with two other procedures. 
The first alternative procedure for estimating the distribu- 
tion of usual intakes is comprised of the following steps: 



1. Power transform the daily intakes, where the selected 
power is chosen to minimize the Anderson-Darling sta- 
tistic. 



2. Compute the mean daily intake for each individual 
using the transformed data. 



3. Shrink the individual means of the transformed data 
for individual i as follows: xij = /A ? & &(Xi. -Ax) 
where fx is the mean of the transformed observations, &Z 
is the estimated variance of the transformed means, and 
&2 is the estimator of the among-individual variance. The 
shrunken means have the mean and variance of the usual 
distribution in the transformed scale. 



4. Back-transform the shrunken means to the original 
scale using a Taylor series approximation to adjust for bias 
when applying the inverse nonlinear transformation to usual 
intakes. 



5. Estimate the cumulative distribution function of usual 
intakes from the back-transformed shrunken means by the 
empirical distribution function. 



This procedure is an extension of the suggestions of the Na- 
tional Research Council (1986). Because the primary differ- 
ence between the procedure described above and our pro- 
cedure of Section 2 is in the transformation of step 1, we 
call the outlined procedure the best power procedure. 



The second alternative procedure for estimating usual in- 
take distributions is based on the smoothed empirical dis- 
tribution of individual mean intakes. This method has been 
used in the past by practitioners and is expected to do poorly 
in the tails, because of the presence of within-individual 
variation in the distribution. 



In the simulation, a true usual intake distribution was 
generated that displays distributional characteristics similar 
to those of protein. Protein is in the center of the compo- 
nents studied with respect to skewness and with respect to 
number of join points. For each of 1,000 samples, an ob- 
servation Yij for the jth day (j = 1, 2) on the ith individual 
(i = 1, ... , 700) was generated as follows: 



* Draw xi, the individual's usual intake in normal scale 
from a N (0, .36) distribution. 



* Draw a2, the measurement error variance, from a uni- 
form distribution on the values .32, .50, .64, 1.1. The 
measurement error variance distribution has mean .64, 
and variance .0834. 



Table 7. Estimates of Selected Percentiles of the Usual Intake 
Distribution Using Three Estimation Methods, Averaged Over 



1,000 Simulations 



Estimation method 



Percentile True Spline Best power 2-day mean 



.01 81.85 81.85 79.31 67.56 
(.076) (.103) (.108) 
[2.402] [4.142] [14.690] 



.05 91.86 91.88 92.03 83.40 
(.052) (.062) (.059) 
[1.638] [1.952] [8.659] 



.10 96.99 96.91 97.97 91.02 
(.043) (.048) (.045) 
[1.355] [1.805] [6.138] 



.25 105.44 105.27 106.18 101.99 
(.033) (.036) (.035) 
[1.057] [1.351] [3.625] 



.50 115.03 115.03 115.17 114.49 
(.029) (.032) (.033) 
[.931] [1.011] [1.176] 



.75 125.23 125.49 124.61 127.77 
(.039) (.039) (.040) 
[1.255] [1.390] [2.831] 



.90 135.42 135.70 134.13 141.62 
(.058) (.060) (.065) 
[1.843] [2.290] [6.527] 



.95 142.23 142.47 141.50 152.69 
(.075) (.083) (.095) 
[2.395] [2.732] [10.871] 



.99 157.00 157.48 159.27 180.05 
(. 128) (. 157) (.208) 
[4.080] [5.467] [23.956] 



NOTE: Values in parentheses are estimated standard errors for the Monte Carlo mean per- 
centiles. Values in brackets are estimated RMSE's. 
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Figure 4. Average Estimated Root Mean Squared Error in Estimated 
Percentiles From 1,000 Simulation Runs, for the Proposed (Spline; Solid 
Line) and Best Power (BP; Dashed Line) Estimation Methods. 



Draw the measurement error uij from a normal distri- 
bution with mean zero and variance 021, for j = 1, 2, 
and form Xij = xi + uij, where Xij is the daily 
intake in normal scale. If Xij falls below -6.97, then 
Xij is set equal to -6.97. 



Let Yij L2j5 be the daily intake in the original scale, 3 i3 
where Lij is a grafted cubic function of Xij. The definition 
for Lij is such that no power of the generated intakes is 
normally distributed. The function relating Yij and Xij is 
presented in Figure 3. 



We computed 291 percentiles of the estimated usual in- 
take distributions using the three procedures, and averaged 
these over the 1,000 samples. The set of percentiles is de- 
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Figure 5. Absolute Average Estimated Bias From 1,000 Simulation 
Runs, for the Proposed (Spline; Solid Line) and Best Power (BP; Dashed 
Line) Estimation Methods. 



fined by the 41 percentiles .01, .025 to .975 by .025, .99, 
plus percentiles corresponding to 250 equally spaced prob- 
abilities. The estimated percentiles were compared to the 
percentiles of the true usual intake distribution, generated 
by numerical integration. Results for selected percentiles 
are shown in Table 7. The estimated root mean squared 
error (RMSE) and the absolute value of the average esti- 
mated bias are plotted against each of the 291 percentiles 
for the three estimation methods in Figures 4 and 5. The 
RMSE and, to some degree, the bias are larger in the tails 
than in the center of the distribution for all procedures. 
Although all three methods display some bias, the method 
proposed in Section 2, called "spline" in the table, produces 
estimates of percentiles that are nearly always less biased 
than the other two methods. The spline method generally 
has smaller standard errors than the best power procedure, 
especially in the tails, and is uniformly superior to the best 
power procedure with respect to MSE for all 291 percentiles 
calculated in the simulation. As expected, the method pro- 
posed in Section 2 provides less biased and less variable 
estimates than estimates based on individual means of the 
2 days. The distribution estimated using individual means 
is comparable to the other procedures only for percentiles 
near the mean of the usual intake distribution. 



To investigate the performance of the balanced repeated 
replication variance estimation procedure, the 700 individ- 
uals in each sample were randomly assigned to 32 approxi- 
mately equal sized clusters in 16 strata containing 2 clusters 
each. Variances based on the 16 balanced replicates were 
computed for the quantiles and confidence intervals cal- 
culated. The coverage of the nominal 95% intervals were 
.959, .964, .967, .963, .958, .943, .941, .943, and .948 for 
the .01, .05, .10, .25, .50, .75, .90, .95, and .99 percentiles. 
As these coverages suggest, the replication variances aver- 
aged somewhat larger than the Monte Carlo variances for 
the first three-fourths of the quantiles and somewhat less 
than the Monte Carlo variance for the larger quantiles. The 
general performance of the replication intervals was judged 
satisfactory, although the coverage of some intervals differs 
significantly (at the 5% level) from the 95% nominal level. 



4. COMMENTS 



We have presented a method for estimating distributions 
of usual intakes based on daily intakes of dietary compo- 
nents consumed almost every day. This method is applicable 
more broadly to settings where the distribution of nonnor- 
mal unobservable means is of interest, and the observed 
data are repeated measurements on a sample unit that mea- 
sure the sample unit's mean with considerable error. An 
example of such a problem is determining an individual's 
average blood pressure using multiple measurements. 



This approach is being extended to estimating usual in- 
take distributions for dietary components that are not con- 
sumed daily, such as individual foods. The daily intake data 
for such components contain numerous zeros from individ- 
uals who never consume the food and from those who did 
not eat the food on the sample days. Nusser et al. (1997) 
proposed methods for estimating the usual intake distribu- 
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tion for foods when usual intakes are uncorrelated with the 
frequency of consumption. 



In addition, distributions of usual intakes of ratios of di- 
etary components, such as percent calories from fat, are 
of interest. When both the numerator and denominator in 
the ratio are observed with error, the methods presented 
in this article are not directly applicable. A modification 
to the approach that is suitable for estimating distributions 
of usual ratio intakes was presented by Carriquiry, Fuller, 
Goyeneche, and Dodd (1995). 



[Received November 1991. Revised May 1996.] 
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In principle, a proper risk assessment for a food chemi-
cal requires that the time-frame for food chemical
intake estimates matches the time-frame for the tox-
icological assessments upon which the safety statements
(ADI, PT W I, etc.) are based. For food additives, the
toxicological assessments are based on exposure over a
lifetime. W hile food consumption data cannot be
collected over the lifetimes of individuals, the informa-
tion should re¯ ect habitual intakes as closely as poss-
ible. T his study investigated the possibility of combining
a 3-day food diary with a food frequency questionnaire
to estimate mean consumer-only food intakes compar-
able to estimates based on a 14-day diary. T he study
population consisted of 948 teenagers and analysis was
based on 32 clearly de ® ned foods. For 47% of the
foods, the di� erence was µ 1 g/day. W hen expressed as
portion sizes, 56% of the foods showed di� erences
representing <5% of an average portion and no food
showed a di� erence > 14% of an average portion.



W hen between-method di� erences (portions/day) were
plotted against the mean of the methods, the mean
between-method di� erence was 0:02… § 0:06) portions/
day with limits of agreement of ¡ 0:10 to 0.14. T his
preliminary investigation suggests that the combined 3-
day diary and FFQ method provides comparable
estimates of mean consumer only intakes to a 14-day
diary. T herefore, a qualitative FFQ may be a useful
adjunct to a food consumption survey of short duration
if estimates of longer term food intakes are required.



Keywords : food additives , food surveys, long term
intakes



Introduction



Monitoring food additive intake is now mandatory
for all member states of the European Union (Euro-
pean Parliament and Council Directives 94/34/EC,
94/35/EC, 95/2/EC). Much research is also being
conducted to examine exposure to other food chemi-
cals such as pesticide residues, contaminants, packa-
ging material migrants , natural plant toxicants and
veterinary drug residues (Reports on Tasks for Scien-
ti® c Cooperation Task 3.2.2 1997, Reports on Tasks
for Scienti® c Cooperation Task 3.2.3 1997, Reports
on Tasks for Scienti® c Cooperation Task 3.2.4 1997,
Chambolle et al. 1995, de M. Gem et al. 1995,
Srikanth et al. 1995) . Methods for estimating expo-
sure to food chemicals have been considered in detail
by various groups (WHO 1985, Codex Alimentarius
Commission 1989, Nutriscan 1992, Rees and Tennant
1993, Gibney 1995, Van Dokkum and Brussard 1995,
ILSI Europe 1996, Reports on Tasks for Scienti® c
Cooperation Task 4.2 1998) . Di� erent approaches
may be necessary for di� erent chemicals but a deci-
sion tree approach , starting with crude conservative
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methods and moving to more detailed methods only
as concern dictates , has been proposed as a sensible
and cost-e� ective strategy for carrying out exposure
assessments (Nutriscan 1994, Gibney and Lambe
1996, Renwick 1996, Reports on Tasks for Scienti® c
Cooperation Task 4.2 1998) . Some of the initial
screening methods are based on hypothetical, worst-
case estimates of food consumption (Douglass et al.
1997, WHO 1989) . In cases where more detailed
estimates of exposure are required, however, food
consumption data collected from individuals are
necessary. For food chemical exposure assessments,
the intakes required are usually those for consumers
only rather than the total population (Nutriscan
1992, Renwick 1996).



In principle, a proper risk assessment requires that the
time-frame for food consumption estimates matches
the time-frame for the toxicological assessments upon
which the safety statements (e.g. acceptable daily
intake, tolerable weekly intake) are based (LoÈ wik
1996) . For food additives , the toxicological assess-
ments are based on exposure over a lifetime and
expressed as intake per kilogram body weight per
day (WHO 1987). Obviously, food consumption data
cannot be collected over lifetimes of individuals but
e� orts should be made to have dietary assessments
re¯ ect habitual or usual intakes as closely as possible.
In the United States , a methodology called the Menu
Census Survey was developed by the National Acad-
emy of Sciences GRAS Review Committee for the
purpose of estimating the intake of substances from
the diet (Abrams 1981) . The methodology, which has
been further modi® ed by the Market Research Cor-
poration of America (MRCA) , is used by govern-
mental and commercial organizations to estimate the
intakes of substances such as food additives , ca� eine,
and novel food ingredients (Webb et al. 1997, Abrams
1991) . The Menu Census Survey is based on a 14-day
diary and is considered to be more representative of
long term intake than surveys such as 24-h recalls or
1± 3-day records (Yetley and Hanson 1983± 84) . Ex-
tending survey duration decreases the within-person
variability which exists in food intake and which
would otherwise lead to low precision in estimates
of usual intake (Liu et al. 1978, Beaton et al. 1979, St.
Jeor et al. 1983, Basiotis et al. 1987) . This e� ect is seen
for food intakes among consumers only but not for
mean population intakes (Lambe et al. 1999) .



Although surveys of 14 days may provide more re-
liable estimates of habitual intake among consumers
only, there are a number of obvious drawbacks in



terms of their practical application . For the investi-
gators, ® nancial and time-frame considerations have
a major bearing on the methodology chosen. Most
food consumption survey budgets would not support
the required number of ® eld workers to cover 14 days
per subject for a large sample size. A 14-day record is
also very burdensome on the respondents . This may
lead to decreased compliance and an increased rate of
non-participation. Quality of data recording in food
surveys has been shown to decrease as survey is
prolonged (Gersovitz et al. 1978) .



This study investigates whether intakes based on a
short food diary can be made more comparable to a
14-day diary by the addition of a qualitative food
frequency questionnaire. It is based on the rationale
that consumer-only intakes are really the mean total
population intakes adjusted for % consumers (i.e.
total intake divided only by the number of individuals
who consume the foods rather than the total sample).
While mean total population intakes show little in-
¯ uence of survey duration , for many foods the value
for % consumers shows a pronounced increase with
an extended number of survey days (Lambe et al.
1999). Therefore, the question asked was whether a
short duration diary (3 days) , to estimate mean total
population intakes, could be combined with a food
frequency questionnaire, to estimate % consumers
over 14 days, to provide estimates of consumer-only
intakes which are interchangeable with 14-day diary
estimates.



Methods and materials



Subject selection



Subjects were recruited from ® ve participating centres
in the European Union (EU) with a target of 200 per
centre ; Dublin, n ˆ 179 ; Ghent, n ˆ 158 ; Helsinki,
n ˆ 184 ; Potsdam, n ˆ 204 ; Rome, n ˆ 223. Teen-
agers were selected as the sample population. Schools
were chosen as the sampling point and non-examin-
ation year classes were invited to participate. Subjects
were blind to the real intentions of the study in that
they were advised that the project was to compare
eating habits of school-children across the EU. Sub-
jects were given both written and verbal instructions
about ® lling out the food diaries, were asked to
pursue normal eating patterns and to carry the diaries
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with them to record foods eaten at consuming times.
Field workers met with the students every 2± 4 days
over the 14 days’ duration to check the diaries for
clarity and completeness.



Estimated food diary records



Food consumption data were collected using esti-
mated records. Each diary was constructed to collect
food consumption data for 14 days, but the design of
the diaries varied somewhat between centres. The
Belgian centre used a diary modelled on the Dutch
National Food Consumption Survey diary. This diary
was structured according to meals and contained food
prompts. In Italy and Germany, the diaries were
structured according to meals but did not contain a
pre-de® ned food list. Ireland and Finland both used
an open-ended format. Irrespective of the design
di� erences, however, each diary collected information
on the time of each eating occasion, a detailed
description of the food and/or drink consumed, the
brand name (if applicable) and the quantity of the
food and/or drink consumed.



Selection of foods



A core group of 32 foods was selected for analysis.
The foods were carefully chosen to provide a balance
of di� erent types of foods, i.e. foods commonly or
rarely eaten, fresh and processed foods, broadly
de® ned food groups (e.g. all bread) and speci® c foods
(e.g. tinned tuna). Considerable e� ort was spent to
ensure a common interpretation of these foods be-
tween centres. For example, `milk’ included milk as a
beverage , milk in tea and co� ee, milk in breakfast
cereals, buttermilk , fermented milk, condensed milk
but not co� ee creamers ; `apples’ meant only apples
eaten as the fruit itself and not as part of fresh fruit
salad, apple pie or any other dish ; `butter and mar-
garine’ included all spreadable fats but not fats
incorporated into dishes during cooking or baking.



Quanti ® cation and coding of food intakes



A variety of methods was employed by each centre to
estimate the quantities of foods and drinks consumed.
The methods included (number of centres using each



approach in parentheses): food photographic atlas
(2) , household measures (5) , weighing or reference
to school meal portions (2) and recipes (1). All centres
coded the diaries on a standardized basis for the 32
targeted foods for the full 14 days. To estimate energy
intakes, all foods and beverages recorded in the diary
were coded for at least two weekdays, one randomly
selected from each of the ® rst and second weeks, and
one weekend day, randomly chosen from either week-
end. Nutrient analysis programs based on McCance
& Widdowson’ s The Composition of Food plus Sup-
plements, the Dutch Food Composition Tables, the
Finnish Food Composition Tables, Bundeslebensmit-
telschluÈ ssel, and the Italian National Table of Food
were used by Dublin, Ghent, Hensinki, Potsdam and
Rome respectively. Heights and weights were directly
measured in four centres and self-reported heights
and weights were obtained in one centre (Helsinki) .



Food frequency questionnair e



A qualitative , interviewer-administered food fre-
quency questionnaire (FFQ) was developed based
on 32 strictly de® ned foods which were common to
all participating centres. The frequency was sub-di-
vided into six categories , ranging from 6̀± 7 days per
week, including more than once per day’ to r̀arely or
never’ . Because the FFQ data were for comparison
with the 14-day diary, any subject who selected one of
the ® rst four options (i.e. eats within a 2-week period)
was coded as a consumer while those who selected
`monthly’ or `rarely or never’ were coded as non-
consumers.



Statistics



The % consumers for each of the 32 foods was
calculated from the FFQ. For each food, the 3-day
mean total population intake from the diary was
calculated and divided by the % consumers for that
food from the FFQ. These values were considered to
be the estimates of mean consumer-only intakes
derived from the combined diary and FFQ method
and were compared with the mean consumer-only
intakes estimated directly by 3-day diaries and 14-
day diaries using the Bland and Altman approach of
plotting the di� erences between methods against their
mean (Bland and Altman 1986). The relevance of
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absolute di� erences (g/day) will di� er depending on
the quantity in which the food is consumed. To
correct the between-method di� erences for the quan-
tity of food consumed, both the di� erences and total
intakes were expressed in terms of average portion
sizes. The Bland and Altman analysis was then also
carried out to assess between method di� erences for
intakes expressed in terms of the equivalent number
of average portions (Ministry of Agriculture , Fish-
eries and Foods 1994) consumed per day. Limits of
agreement were calculated for the between-method
di� erences expressed in terms of portions/day.



Results



The general characteristics of the study population
and the mean energy intakes are given in table 1. The
% of those initially recruited in the study who either
dropped out or whose diaries were incomplete ranged
from 7% to 25% between centres giving a ® nal
number of 948 subjects. The mean age was broadly
similar across centres (range 13 § 2 to 16 § 1 year) , as
was body mass index (range 19:9 § 3:3 to 22:3 § 1 kg/
m2) . In three of the centres the male to female ratios
were about equal while in the other two centres the
females outnumbered the males by about 3± 4:1. En-
ergy intakes were broadly similar to the recom-
mended values of 10.89± 14.1 MJ/day for boys aged
14.5± 15.5 years and 8.74± 8.88 MJ/day for girls aged
14.5± 15.5 years (Scienti® c Committee for Food 1993).



Mean total population intakes, % consumers and
mean consumer-only intakes for all 32 foods esti-
mated using subjects’ ® rst three survey days and all
14 survey days are presented in table 2, along with the
% of the consumers estimated using the FFQ. The
mean total population intakes from the food diaries
for both time periods were very similar, with the 14-
day mean total population being on average 0.9
(§ 0.1) times the 3-day mean total population intake.
In contrast, the values for % consumers and mean
consumer-only intakes were quite di� erent between
time periods, with the 14-day values being 1.8(§ 0.5)
and 0.6 (§ 0.2) times the 3-day diary values respect-
ively. The estimates of % consumers from the FFQ
resembled the 14-day diary estimates of % consumers
much more closely, being on average 1.1 (§ 0.2) times
the 14-day estimates. For certain foods, however, the
food frequency questionnaire did not provide a close
estimate of the 14-day value for % consumers (apples,
bananas , corn¯ akes, diet soft drinks, non-diet soft
drinks, yoghurt).



The mean consumer intakes predicted by the com-
bined 3-day diary and FFQ method are compared
with the mean consumer only intakes observed from
the 14-day diary in table 3. For 19% of the foods,
there was no di� erence between the consumer-only
intakes for the two survey methods, with a further
28% of foods showing a di� erence of only 1 g/day. Of
the 26 foods where di� erences did occur, 73% were
overestimated by the combined diary and FFQ
method. In the context of average portion sizes, the
between-method di� erences represented extremely
small fractions of average portion sizes of the
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T able 1. Recruitment patterns, demographic and anthropometric details and energy intakes for each participating
centre.



Dublin Ghent Helsinki Potsdam Rome



No. of schools for recruitment 5 5 4 2 1
Drop out rate (%) 24 15 14 25 7
No. of subjects who completed the survey 179 158 184 204 223
Gender



Males (%) 41.9 48.1 20.1 48 26.5
Females (%) 58.1 51.9 79.9 52 73.5



Age years (Mean § sd) 16. (§ 1) 15. (§ 1) 15. (§ 1) 13. (§ 2) 16. (§ 1)
Mean energy intake



Males (MJ/day) 10.9 (§ 2.8) 11.0 (§ 2.0) 9.4 (§ 2.5) 9.0 (§ 2.1) 12.4 (§ 3.6)
Females (MJ/day) 7.5 (§ 1.9) 8.7 (§ 1.5) 7.6 (§ 1.8) 7.9 (§ 1.7) 8.6 (§ 2.4)



Height (m) 1.69 (§ 0.08) 1.7 (§ 0.09) 1.68 (§ 1.8) 1.62 (§ 0.01) 1.64 (§ 0:08)
Weight (kg) 63.9 (§ 10.9) 59.3 (§ 10.3) 56.6 (§ 8.9) 52.8 (§ 12.6) 60.5 (§ 9.6)
BMI 22.1 (§ 3.4) 20.4 (§ 2.4) 20.1 (§ 2.4) 19.9 (§ 3.3) 22.3 (§ 3.0)











foods, with 56% of the foods showing di� erences
of less than 5% of a portion. Only six foods
had di� erences in excess of 10% of an average por-
tion, with the largest di� erence being 13.9% for
corn¯ akes.



Figure 1 plots the di� erences between the 14-day
consumer-only estimates and combined 3-day diary
and FFQ estimates against the mean of the two
methods and the di� erences between the 14-day
consumer-only estimates and the 3-day estimates
against the mean of the two methods, using the
Bland and Altman approach. For the combined 3-
day diary and FFQ method, the di� erences to the 14-



day estimates were not proportional to the magnitude
of the intake of the food. In contrast , the between-
method di� erences of the 3-day diary versus 14-day
diary showed a large positive bias which is propor-
tional to the magnitude of the intake of the food. In
this analysis , foods rather than subjects form the data
points. Therefore calculating mean di� erences and
limits of agreement is not informative because a 10
g/day di� erence may not be signi® cant for a food
consumed at 300 g/day but may be signi® cant for a
food consumed at 14 g/day. Figure 2 also plots the
between-method di� erences against the mean of the
methods for both the combined 3-day diary and FFQ
method and the 3-day diary against the 14-day diary
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T able 2. Mean total population intakes (g/day), % consumers and mean consumer-only intakes estimated from a 3-day
diary and a 14-day diary and % consumers estimated from a qualitative food frequency questionnair e (FFQ).



3-day diary survey FFQ 14-day diary survey
FFQ



Mean total Mean consumer- Mean total Mean consumer-
population % only intakes % population % only intakes



intake (g/day) consumers (g/day) consumers intake (g/day) consumers (g/day)



Apples 36 42 85 82 34 68 49
Bananas 19 31 63 78 18 59 30
Biscuits 15 50 29 79 12 75 16
Bottled water 188 41 457 60 162 50 321
Bread 116 99 117 100 109 100 109
Butter and margarine 11 70 15 80 10 82 13
Cheese 23 74 32 88 22 91 24
Chicken 19 35 53 76 19 77 24
Chocolate 22 70 31 84 18 88 21
Corn¯ akes 4 16 25 44 4 30 15
Crisps 6 27 23 57 6 56 10
Eggs 10 30 33 74 9 70 13
Fish 14 30 46 57 12 63 18
Fizzy diet drinks 15 7 203 31 13 17 77
Fizzy non-diet drinks 143 55 260 70 136 83 164
Fruit juice 139 64 217 85 122 81 151
Fruit pies and tarts 7 13 54 38 6 35 17
Ice cream 12 29 40 62 11 59 18
Jam and marmalade 4 32 13 56 4 51 7
Ketchup 2 24 10 63 2 55 4
Mayonnaise 2 26 10 46 2 51 4
Milk 238 86 275 92 223 94 236
Pasta 64 58 110 89 62 90 69
Pizza 31 32 97 65 29 67 43
Potatoes 89 83 107 96 85 99 86
Rice 19 30 64 71 19 69 27
Sugar 5 48 10 70 4 70 6
Sweets 10 50 20 83 9 74 12
Tinned and bottled fruit 7 14 49 38 6 33 18
Tinned tuna 2 10 20 34 2 25 8
Tomatoes 9 34 27 72 9 63 14
Yogurt 42 40 104 74 35 63 55











but in a more standardized way, with the between-
method di� erences and the means of the methods
expressed as portions/day. For the combined 3-day
diary and FFQ method, the mean between-method
di� erence was 0.02 (§ 0.06) portions/day with limits
of agreement of ¡ 0:10 to 0.14 portions/day.



Discussion



Although estimates of food chemical intakes should
consider the long-term or habitual intakes of the



population , collection of long-term food consumption
data is extremely labour intensive, expensive and
burdensome for both the respondents and research-
ers. The results of this study show that the mean total
population intakes, based on a 3-day food diary, can
be divided by % consumers, based on a food fre-
quency questionnaire, to give comparable values to
the mean consumer-only intakes based on a 14-day
food diary.



To obtain a reasonably homogeneous, readily access-
ible population group for testing the methodological
issue of the in¯ uence of survey duration , teenagers
were selected and schools were chosen as the sampling
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T able 3. Mean consumer-only intakes (g/day) estimated from the combined 3-day diary plus FFQ (predicted) and 14-
day diary (observed), with the between-method di� erences expressed in g/day and as % of a typical portion size of each
food.



Di� erence as
% of typical



Predicteda Observeda Di� erencea Average portion portion size
(g/day) (g/day) (g/day) size (g) (%)



Apples 44 49 6 112 5.2
Bananas 25 30 5 100 4.9
Biscuits 19 16 7 2 28 7.8
Bottled water 316 321 5 200 2.4
Bread 116 109 7 7 60 11.8
Butter and margarine 13 13 7 1 7 13.1
Cheese 27 24 7 2 40 6.0
Chicken 25 24 7 1 130 0.4
Chocolate 26 21 7 5 45 11.7
Corn¯ akes 9 15 6 40 13.9
Crisps 11 10 7 1 30 2.2
Eggs 13 13 0 330 0.0
Fish 24 18 7 6 60 5.1
Fizzy diet drinks 47 77 30 120 9.0
Fizzy non-diet drinks 204 164 7 40 200 12.0
Fruit juice 163 151 7 12 120 5.8
Fruit pies and tarts 18 17 7 1 60 1.0
Ice cream 19 18 7 1 15 1.0
Jam and marmalade 8 7 0 30 2.2
Ketchup 4 4 0 30 1.1
Mayonnaise 5 4 7 1 200 4.0
Milk 260 236 7 24 330 11.9
Pasta 72 69 7 4 230 1.6
Pizza 47 43 7 5 280 1.6
Potatoes 93 86 7 7 120 5.6
Rice 27 27 0 150 0.0
Sugar 7 6 0 6 6.2
Sweets 12 12 7 1 28 2.0
Tinned and bottled fruit 18 18 0 105 0.2
Tinned tuna 6 8 2 45 4.7
Tomatoes 12 14 1 85 1.8
Yogurt 56 55 7 1 125 0.5



a Values have been rounded up to nearest integer but di� erences between predicted and observed intakes were calculated on raw data.











point. Access to the subjects during school hours
facilitated the ® eld worker visits. The project manage-
ment group selected 32 foods which were common to
all ® ve participating centres and which provided a
range of characteristics such as being rarely and
commonly consumed, fresh and processed, broadly
and narrowly de® ned groups, etc. The selection of the
foods was, however, to a large extent arbitrary and
the 32 foods cannot be considered to be representative
of all foods. Therefore, in the interpretation of the
results of this study, emphasis should be placed on the
broad ® ndings rather than the exact values pertaining
to individual foods.



Maintaining quality of data recording throughout the
14-day survey period was very important for this
methodological research question. To keep subjects



as motivated as possible, visits were made every 2± 4
days. A sub-analysis performed on the Italian sample
as a check of trend in quality of data reporting
showed little impact on the average daily energy
intake for week 1 compared with week 2 of the survey
(9:8 § 4:3 versus 9:3 § 4:0 MJ/day respectively) but
did show a reduction of 12% in the number of eating
occasions reported (5:02 § 1:6 versus 4:4 § 1:5 occa-
sions/day respectively) .



Comparability was judged using the Bland and Alt-
man approach of examining between-method di� er-
ences in relation to the mean of the two methods, and
considering whether the between-method di� erences
were of clinical or practical signi® cance. The di� er-
ences in estimates of mean consumer-only intakes
between the 14-day diary and the combined 3-day
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Figure 1. Comparison of between-method di� erences agains t the mean of the methods for 3-day diary against 14-day
diary and combined 3-day diary with FFQ method against 14-day diary (g/day). * , Combined method vs 14-day diary ;
~ , 3-day diary vs 14-day diary.











diary and FFQ were small, with 88% of foods show-
ing di� erences of less than 10 g/day. For most foods
(73%), the combined 3-day diary and FFQ method
overestimated rather than underestimated the 14-day
diary intakes. In the context of food chemical intake
assessments, overestimation of food intake is prefer-
able to underestimation because the underlying pur-
pose is to assess whether individuals are at risk of
unacceptably high intakes of the food chemical in
question. Therefore, if error is present, it should be on
the side of conservatism. When the between-method
di� erences of the two methods considered in this
study are expressed in terms of the proportion of
average portion sizes of foods that they constitute
(table 3) , their practical signi® cance appears minimal.
Over half the foods (56%) showed a di� erence of less
than 5% of an average portion size and none showed
a di� erence in excess of 14%. In the overall context of
the errors in dietary methodology, these di� erences



are small with errors incurred from the estimation of
portion weights of foods being regularly in the range
of 20± 50% (Bingham 1987). The between-method
di� erences of the combined 3-day diary and food
frequency questionnaire method and the 14-day diary
are in contrast to the di� erences which arise between
mean consumer-only intakes estimated by a direct
analysis of 3-day diaries and mean consumer intakes
based on 14 days. On average the 3-day diary intake is
almost twice the 14-day intake and therefore it could
not be said that the methods are interchangeable.



The FFQ used in this study was strictly qualitative ,
designed only to determine % consumers and not to
obtain quantitative estimates of food intake. As dis-
cussed by Bingham (1987) , FFQs provide similar
results to diet records and diet histories when indi-
viduals are asked about food use but validations at
the quantitative level have been less consistent. This
FFQ included 32 clearly de® ned foods which were
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Figure 2. Comparison of between-method di� erences against the mean of methods for 3-day diary against 14-day diary
and combined 3-day diary with FFQ method against 14-day diary expressed in terms of average portions per day. * ,
Combined method vs 14-day diary ; ~ , 3-day diary vs 14-day diary.











common to all ® ve participating centres. They pro-
vided a wide range of food characteristics including
commonly or rarely eaten, large or small portion size,
broad/aggregated food group or speci® cally de® ned
food, fresh or processed foods. Of the 32 foods on the
FFQ, six foods had estimates of % consumers which
di� ered by more than 10% from the estimates in the
14-day diary. Apples, bananas , yogurt, corn¯ akes and
® zzy diet drinks were all overestimated and ® zzy non-
diet drinks were underestimated. This may re¯ ect
some degree of social desirability on the part of the
respondents as the foods which were overestimated
may have been perceived as the `healthy foods’ on the
list. Further research using a more comprehensive
food frequency questionnaire would be necessary to
establish whether this is the case. Other factors have
been documented to in¯ uence responses to an FFQ.
Kuskowska-Wolk et al. (1992) demonstrated that
food frequency responses and food and nutrient
intakes were sensitive to the order of frequency op-
tions on the questionnaire (i.e. increasing or decreas-
ing) , the presence or absence of portion sizes and the
presence or absence of additional non-frequency
questions (e.g. type of fat used). Krebs-Smith et al.
(1995) found that estimates of fruit and vegetables
were positively associated with the number of food
items included in the FFQ. The combined diary and
FFQ method may be particularly suited to food
chemical intake studies where the food chemical is
con® ned to a limited number of easily de® ned foods,
e.g. sweetener intake studies or studies of pesticide
intake from fruit and vegetables. Careful considera-
tion must, however, be given to the format of the
questionnaire, the number of foods and the degree of
aggregation.



The selection of the 3 days for the diary should also
be considered. In the analysis presented in this paper,
the 3 days used were each subject’s ® rst 3 days,
irrespective of what day of the week his or her survey
commenced. A sub-analysis of the Belgian data,
however, suggested a combination of two weekdays
and one weekend day was the combination which
most closely approximated the 14-day consumer-only
intakes (data not shown). The mean total population
intakes based on 3 days were very similar to that of 14
days and thus permitted application of the % con-
sumers value from the FFQ for estimation of 14-day
consumer-only intakes. Mean total population in-
takes have been demonstrated to show little in¯ uence
of survey duration with time (Yetley and Hanson
1983± 84, Lambe et al. 1999). However, an analysis
of the intakes of a number of foods from the database



of the Dietary and Nutritional Survey of British
Adults 1988 (results not shown) has suggested that
this lack of e� ect is sensitive to sample size, with
stability in intakes for sample sizes of 200 or greater
but not for sample sizes of less than 100. Therefore,
this method may not be appropriate for small-scale
surveys. Where existing databases of short-term food
intake already exist for large samples, additional
questionnaires may be useful for determining what
longer-term intakes would be like.



While the combined diary and FFQ method provided
very good estimates of 14-day intakes, it is important
to be aware that the values obtained are point esti-
mates. By combining the mean population intakes
with a value for % consumers , a single estimate rather
than the distribution of intakes is calculated. For risk
assessment, food intake estimates should aim to
quantify consumption at the upper end of the distri-
bution (WHO 1985, Nutriscan 1992, Renwick 1996).
The mean consumer-only values obtained from the
combined diary and FFQ method can be multiplied
by 3 to give an approximation of high intakes (90th



percentile) (WHO 1985) .



In conclusion, promising results have been obtained
from this baseline exploration of whether a 3-day
diary plus FFQ is interchangeable with a 14-day diary
for estimating mean consumer-only intakes of foods.
Further work may be necessary to test the method-
ology in other population groups, to test various
formats and levels of food de® nitions on the food
frequency questionnaire and to examine the relation-
ship between mean intakes estimated using the new
method and the values at the extremes of the distri-
bution from the 14-day diary. It would appear , how-
ever, that in situations where it is not possible to
conduct lengthy food diary surveys , the addition of a
qualitative FFQ to a shorter diary could be consid-
ered as a possible alternative.
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Statistical analysis of pooled dietary intake data in multicenter and multiethnic studies is often hampered by
lack of comparability due to application of different food frequency questionnaires (FFQs). To remove this
deficiency, dietary intake measurements should be standardized. This paper presents a standardization
procedure based on nonlinear calibration, which aims to approximate the usual intake distribution estimated by
reference measurements. The method can be applied in studies with repeated standardized reference
measurements that can refer to time periods different from that of the FFQ. It was developed especially for short-
term reference assessment methods, such as 24-hour recalls, diet records, and biomarkers. Similar to linear
calibration, the proposed method does not change the rankings of subjects in each center or group; therefore, it
maintains the within-center validity of the FFQ data. In contrast to linear calibration, the mixture of nonlinearly
calibrated intake measurements from different centers or groups corresponds to the mixture of usual intake
expected from the reference measurements. This paper illustrates this property of achieving high between-center
validity by using macronutrient intake data from the 1995–1996 European Prospective Investigation into Cancer
and Nutrition–Potsdam validation study. Here, the proposed method is compared with three linear calibration
methods.



calibration; diet; epidemiologic methods; questionnaires



Abbreviations: EPIC, European Prospective Investigation into Cancer and Nutrition; FFQ, food frequency questionnaire.



Food frequency questionnaires (FFQs) are the most often
applied method of dietary assessment in large-scale epidemi-
ologic studies because they are relatively inexpensive, easy
to administer, and directed to long-term dietary exposure,
which is of primary interest in nutritional epidemiology (1).
However, FFQs are specific to countries and ethnic groups
and have varying degrees of validity, completeness, and
specification. Consequently, dietary intakes obtained by
using different FFQs are not directly comparable since they
do not measure the same components of dietary exposure
with the same accuracy. Therefore, if different FFQs are
applied in multicenter or multiethnic studies, the calculated
intake data must be standardized. Standardization is also
recommended in cases of a unique FFQ if its application is
associated with bias that differs for groups of subjects, for



example, if it is different for men and women. Standardized
dietary intake data enable estimation of the overall effect of
food or nutrient intake on a disease risk common to all
centers and groups, without use of meta-analysis. Even in the
case of a pooled analysis of different studies by using tech-
niques of meta-analysis, dietary intake data should be stan-
dardized to ensure that study-specific parameters describe
quantitatively the same effect (2–5).



Standardization requires a reference method that is 1) appli-
cable to all centers and all ethnic groups in the same manner
and 2) more accurate than the FFQ itself. It is sufficient to
have reference measurements for subgroups of randomly
selected subjects in each center and group. In the European
Prospective Investigation into Cancer and Nutrition (EPIC)
and the Hawaii–Los Angeles Multiethnic Cohort studies, 24-
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hour recalls are used as a reference assessment method (6–8).
Other recommended reference methods are diet records and
biomarkers (1). Note that, compared with FFQs, they all refer
to very short periods of exposure. Thus, a standardization
procedure should allow for the possible nonconformity of
time periods of the assessment methods being compared.



Standardization can be carried out by the technique of cali-
bration. For each center, a calibration function has to be
determined on the basis of measurement pairs available for a
subgroup. Denote dietary intake data obtained by FFQ and
the reference method as Q and R, respectively; then, the cali-
bration function is a function of Q that approximates R in
some sense and that will be applied afterwards to the FFQ
data for all subjects in the center. An often-used statistical
procedure to find a good approximation is linear regression
based on the method of least squares or on the maximum
likelihood method (9, 10). If positive correlation between Q
and R is assumed, the corresponding calibration function is
strictly monotonic increasing and therefore does not change
the rankings of the subjects. Linear regression calibration
also guarantees that the arithmetic means of the calibrated
FFQ intakes and the reference measurements always coin-
cide for each center. However, apart from the equality of
means, the distribution of the calibrated questionnaire data
can be very different from that expected from the reference
measurements for the same period of exposure. In particular,
the estimated variance and the range of measurements are
often too small after linear regression calibration. This
discrepancy is a serious weakness of linear regression cali-
bration if applied in a multicenter study. In a pooled data set
of calibrated dietary intake, the rankings for one center can
deviate markedly from those expected from the reference
measurements. Consequently, the center effect and the diet
effect on a disease are confounded, implying biased results
in nutritional epidemiology.



In this paper, a nonlinear calibration approach is proposed
that prevents the confounding effects caused by pooling
data. Its application ensures that the rankings for one center



are similar in both pooled data sets of calibrated FFQ intake
and estimated usual intake. Thus, the reference data control
the ranking of calibrated data from different centers. To
ensure the same time frame as the FFQ, the calibration
procedure starts by estimating the usual dietary intake distri-
bution from the short-term reference measurements from
each center. Then, the estimated center-specific usual intake
distribution is approximated by using a strictly monotonic
increasing, but nonlinear function of Q. The calibrated FFQ
data can be considered standardized long-term dietary
intake, where standardization refers to mean, variance,
skewness, and kurtosis.



The following section describes the proposed method in
detail. It is then applied to data from a validation study
performed within the EPIC-Potsdam study (11). In this
paper, men and women are considered two groups with
different FFQ biases, and dietary intake is calibrated sepa-
rately. Using these data, we compare the nonlinear method
with three different linear calibration methods, including the
classic linear regression calibration.



A NONLINEAR CALIBRATION METHOD



The proposed nonlinear calibration method is a multistep
procedure, outlined in table 1, that must be applied in each
study center or group separately. For calibration purposes, a
selected group of study participants was asked to fill out
multiple food records or 24-hour dietary recalls that were
considered as reference measurements and as a more reliable
source of information. Suppose that, for the ith individual
(i = 1,...,n), we have one questionnaire measurement Qi and
k replicate measurements of the reference dietary assessment
method, Rij (j = 1,...,k). Typically, Qi is a long-term measure-
ment, whereas Rij is a short-term measurement referring to a
time period (often 1 day) that ideally should be included in
the Qi time period (often 1 year).



In the first phase of the procedure, the usual intake distri-
bution must be estimated by using repeated short-term refer-



TABLE 1.   Steps in the proposed nonlinear calibration method for calibrating dietary intake data obtained by 
an FFQ*



* FFQ, food frequency questionnaire.



Step Purpose Result in symbols



Estimate the usual intake distribution



1 Transform the repeated short-term reference measurements  to normality.



2 Average the transformed reference measurements  for each individual.



3 Shrink the individual means  of the transformed data to obtain an estimate of 
the true usual intake in the transformed scale.



4 Back-transform  by integrating the inverse transformation g –1 over the error distribution. 
The result  is the usual intake estimated by the reference measurements.



Standardize the FFQ data



5 Apply a power transformation to the questionnaire measurement with the aim of 
approximating skewness and kurtosis of 



6 Standardize the sample mean and variance of the power-transformed FFQ data  to 
the sample mean and variance of the estimated usual intake 



Rij Xij g Rij( )=
Xij Xi .



Xi . T̂i



Ti
ˆ



R̂i



R̂i



Ri.
ˆ



f Qi( )



f Qi( )
R̂i .



f ∗ Qi( )
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ence measurements. This task can be performed by using the
Nusser method (12–14), a new and efficient estimation
method applied in food consumption surveys. The Nusser
method is complex and requires the software packages SIDE
or C-SIDE (15), developed at Iowa State University. If SIDE
and C-SIDE are not available, a simplified version of the
Nusser method can be applied. This version is not optimal,
but it requires considerably less computational effort. The
four steps of the simplified Nusser method follow.



In step 1, the reference measurements Rij will be trans-
formed to obtain a sample distribution toward normality. To
achieve this, the well-known two-parameter family of Box-
Cox transformations (16) is used, which is defined by



  .    (1)



We confine ourselves to Box-Cox transformations with a
power parameter τ that is zero or the inverse of a positive
integer. This restriction simplifies the back-transformation
because an exact formula can be used (refer to the
Appendix). Because of the parameter restriction, we cannot
estimate τ and ω by using the common maximum likelihood
method (16–18). Therefore, we apply a grid search proce-
dure to maximize the Shapiro-Wilk statistics, the statistics
applied most often to test the hypothesis of an underlying
normal distribution. A special macro was written by using
SAS software (SAS Institute, Inc., Cary, North Carolina),
where τ varies over the grid (1, 1/2, 1/3,... , 1/10, 0) and ω
varies over the same grid multiplied by the mean of the orig-
inal data.



Subsequent steps 2 and 3 are based on the assumption that
the classic measurement error model with normally distrib-
uted components holds for the transformed reference
measurements Xij = g(Rij). This model has the form



                                     .                                   (2)



Here, Ti denotes the true usual intake of the ith individual
according to the transformed scale, where “usual” refers to a
long-term daily average, in most cases an average over 1
year. The error term εij includes the day-to-day variation as
well as the random measurement error. Because Ti and εij are
assumed to be independent and normally distributed with
expectations µ and 0 and variances σT



2 and σε
2, respectively,



the resulting distribution of Xij is also normal with expecta-
tion µ and the summed variance σT



2 + σε
2. Moreover, the



average  for the ith individual, derived in step 3, has the
same distribution as Xij, with the only exception being that
the variance is reduced to



                                    .                                  (3)



Here, k denotes the number of replicates. Finally, the vari-
able defined by



                                                   (4)



has the same distribution as the transformed usual intake Ti.
Therefore, if the standard estimators for the unknown param-
eters are applied, Ti can be estimated by



                                          (5)



in step 3, where  denotes the empirical variance and 
stands for the grand mean. The ratio on the right-hand side of
equation 5 is called shrinkage factor because it is always less
than 1. Thus,  is a shrinkage estimator that shifts the indi-
vidual mean  to the grand mean to remove the remaining
intraindividual variation in the individual means. This esti-
mator should not be confused with an empirical Bayes or
Stein-type estimator that has a similar form but another moti-
vation. Note that the quantity under the square-root sign in
this equation can be negative. In this rare case, the variance
component of Ti should be estimated by using the nonnega-
tive minimum biased invariant estimator of Hartung (19).



In step 4, the estimated usual intake  will be back-
transformed to the original scale of the reference measure-
ments by integrating the inverse function g–1 (t + ε) over the
normal distribution of the error term ε, ending with usual
intakes  in the original scale. Instead of approximating the
integral as proposed in the original Nusser method (12), an
explicit formula for the integral can be used in the back-
transformation step to simultaneously improve the accuracy
and reduce the computational effort (refer to the Appendix).
Applying the back-transformation formula ensures the
equality of the arithmetic means of the original and back-
transformed data, provided that the distribution of the trans-
formed data is approximately normal or at least symmetric.



The second phase, consisting of steps 5 and 6, represents
the centerpiece of the calibration procedure because it relates
the questionnaire measurement to the estimated usual intake.
Actually, the FFQ data are standardized to be distributed
similar to the variable  obtained in step 4. At first, a power
transformation



                                   f(Qi) = (Qi + d)c                             (6)



is applied to approximate skewness and kurtosis of . Prin-
cipally, any optimization method for solving equations that
allows for the two parameter restrictions c > 0 and d > –min
Qi can be used. We estimated the parameters by minimizing
the sum of squared deviations, where c varied in an interval
(0, cmax] and d in an interval (–min Qi, dmax]. Next, a linear
function



               f *(Qi) = af(Qi) + b = a(Qi + d)c + b                 (7)



is determined to have the same mean and standard deviation
as those for the estimated usual intake distribution. Note that
a linear transformation does not change skewness and
kurtosis of the distribution and therefore does not cancel out
the usefulness of step 5. The function f * represents the
nonlinear calibration function. In general, calibrated values
will be positive. In the rare case of negative values, they
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should be replaced by zero. Since the parameters a, defined
as a ratio of two standard deviations, and the power c are
both positive values, the nonlinear calibration function is
always strictly monotonic increasing and does not change
the ranking of the subjects.



APPLICATION AND COMPARISON OF NONLINEAR AND 
LINEAR CALIBRATION



To illustrate application of the proposed nonlinear calibra-
tion method, we used data on macronutrient intake from the
1995–1996 EPIC-Potsdam validation study; the characteris-
tics of the study population consisting of 75 men and 59
women have been described previously (9). In brief, during
the 1-year study phase, trained interviewers conducted three
computer-assisted 24-hour dietary recall interviews per
season. At the end of the study, all participants filled out an
FFQ covering the 1-year study phase. All participants
completed at least 10 of the 12 24-hour recalls. Interviews
were conducted on all weekdays except Friday. Recalls
concerning food consumed on Saturday and Sunday were
obtained on Monday. For more details, refer to Kroke et al.
(11).



As shown in table 2, we compared the arithmetic mean,
standard deviation, skewness, and kurtosis of the sample



distribution of all 24-hour recalls; the distribution of indi-
vidual mean intake as the average of 12 recalls; and the
distribution of estimated usual intake. For energy, total
protein, total fat, and total carbohydrate, and for both
genders, the sample distribution was flat with a high standard
deviation reflecting both inter- and intraindividual variation.
As a result of reduced intraindividual variation, the indi-
vidual means of repeated recalls had a lower standard devia-
tion along with increased lower and decreased higher
percentiles. Since usual intake was estimated after all
intraindividual variation was eliminated, its distribution was
even more shrunken than that of the individual means.
Whereas the arithmetic means of the three distributions coin-
cided, skewness and kurtosis were generally closer to zero if
intraindividual variation was reduced or eliminated. Thus,
the day-to-day individual variation in dietary intake had a
higher degree of nonnormality than the variation in usual
intake in the population. Altogether, table 2 demonstrates
that the estimated usual intake distribution clearly differed
from the sample distribution of short-term reference
measurements.



In addition to describing 24-hour recalls and estimated
usual intake, table 2 also includes the sample moments of
daily intake obtained by FFQ. If we suppose that the refer-
ence measurements had minor bias, bias in the FFQ data can



TABLE 2.   Comparison of observed, averaged, and usual daily intake of macronutrients based on 12 repeated 24-hour recalls and of 
daily macronutrient intake obtained by FFQ* in the European Prospective Investigation into Cancer and Nutrition–Potsdam validation 
study, 1995–1996



* FFQ, food frequency questionnaire.



Nutrient



Men (n = 75) Women (n = 59)



Arithmetic 
mean



Standard 
deviation Skewness Kurtosis Arithmetic 



mean
Standard 
deviation Skewness Kurtosis



Energy (MJ)



All 24-hour recalls 9.71 2.78 0.67 0.84 7.23 2.34 1.16 3.89



Individual means 9.71 1.53 0.12 0.39 7.23 1.44 0.54 0.93



Estimated usual intake 9.71 1.37 0.13 0.39 7.23 1.28 0.37 0.46



FFQ 9.71 1.96 0.13 0.06 8.03 1.94 0.65 0.57



Total protein (g)



All 24-hour recalls 82.6 27.5 0.86 1.00 61.6 21.4 0.76 1.70



Individual means 82.5 12.7 0.01 0.40 61.6 11.5 –0.07 –0.19



Estimated usual intake 82.5 10.1 0.03 0.42 61.6 10.0 –0.16 –0.23



FFQ 81.0 17.6 0.15 0.67 66.1 18.2 1.16 1.19



Total fat (g)



All 24-hour recalls 92.6 36.2 1.16 3.15 65.0 30.4 1.31 3.67



Individual means 92.6 18.1 –0.15 –0.05 65.0 18.0 0.79 1.33



Estimated usual intake 92.6 15.3 –0.25 –0.06 65.0 16.2 0.63 0.96



FFQ 82.9 23.6 0.22 –0.02 65.8 20.6 0.52 0.08



Total carbohydrate (g)



All 24-hour recalls 244.0 80.5 0.47 0.11 204.3 72.2 1.02 3.65



Individual means 243.8 52.0 0.38 –0.14 204.3 43.4 0.46 0.55



Estimated usual intake 243.8 48.5 0.40 –0.12 204.3 38.6 0.32 0.20



FFQ 245.4 55.8 0.46 0.41 223.1 56.2 0.47 0.45
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be estimated as the difference between their arithmetic mean
and that of the 24-hour recalls. Obviously, the estimated bias
was very different for men and women. For example, women
overestimated their energy intake by 800 kJ/day on average,
whereas no bias was visible for men. On the other hand, men
underestimated their total fat intake by about 10 g/day; the
intake data for women were nearly unbiased. Because of
these discrepancies, we calibrated FFQ data separately for
both genders. In contrast to a uniform calibration of the
whole sample, separate calibration enabled us to eliminate
gender-specific bias.



In tables 3 and 4, four different calibration methods were
evaluated by comparing the distribution of calibrated FFQ
intake with that of usual intake for energy, total protein, total
fat, and total carbohydrate. In addition to the nonlinear cali-
bration method described in this paper and classic linear
regression calibration, two further linear methods were
involved. Additive and multiplicative calibration were
defined by linear functions of only one parameter. Whereas
the slope was fixed at 1 in the additive procedure, multiplica-



tive calibration was characterized by 0 intercept. In both
cases, the unique parameter was estimated by setting the
means of the calibrated and reference measurements to be
equal.



For all nutrients considered, linear regression calibration
shrank the distribution too much, as can be observed by the
standard deviation of calibrated intakes—only about half
that of the estimated usual intake. On the other hand, addi-
tive and multiplicative calibration resulted in distributions
that were too flat. The proposed nonlinear calibration
method ensured coincidence of the standard deviations when
compared with usual intake. Moreover, the best fit of the
whole usual intake distribution was achieved by nonlinear
calibration, evident by the closeness of corresponding
percentiles.



After separate calibration of FFQ data for men and
women, we pooled both data sets. We also pooled the esti-
mated usual intake values for both genders. To describe the
order in the pooled data set, we considered the following two
proportion functions:



TABLE 3.   Comparison of usual intake and different calibration methods applied to macronutrient intake 
obtained by FFQ* for 75 men in the European Prospective Investigation into Cancer and Nutrition–Potsdam 
validation study, 1995–1996†



* FFQ, food frequency questionnaire.
† Twelve repeated 24-hour recalls were used as reference measurements and to estimate the usual dietary intake



distribution.



Nutrient and calibration method
Percentile Arithmetic 



mean
Standard 
deviation5 10 25 50 75 90 95



Energy (MJ)



Estimated usual intake 7.49 8.13 8.93 9.54 10.51 11.44 12.57 9.71 1.37



Nonlinear calibration 7.40 7.84 8.69 9.67 10.59 11.41 11.82 9.71 1.37



Regression calibration 8.43 8.69 9.18 9.71 10.19 10.60 10.80 9.71 0.72



Additive calibration 6.23 6.94 8.27 9.72 11.01 12.12 12.68 9.71 1.96



Multiplicative calibration 6.24 6.94 8.27 9.72 11.01 12.12 12.67 9.71 1.96



Total protein (g)



Estimated usual intake 64.2 69.7 77.0 82.2 89.2 96.1 99.7 82.5 10.1



Nonlinear calibration 64.1 68.1 75.9 83.8 88.8 93.5 99.9 82.5 10.1



Regression calibration 75.2 76.8 79.7 82.9 85.0 87.0 89.8 82.5 4.1



Additive calibration 51.5 58.0 70.7 84.2 93.2 101.7 113.5 82.5 17.6



Multiplicative calibration 50.9 57.5 70.5 84.3 93.4 102.1 114.1 82.5 17.9



Total fat (g)



Estimated usual intake 65.0 74.4 82.0 90.7 103.7 114.3 115.6 92.6 15.3



Nonlinear calibration 65.0 70.4 82.5 94.2 103.9 111.0 114.2 92.6 15.3



Regression calibration 78.5 80.5 86.2 92.8 98.8 103.7 106.0 92.6 8.7



Additive calibration 54.5 59.9 75.2 93.1 109.5 122.6 128.9 92.6 23.6



Multiplicative calibration 50.0 56.1 73.2 93.1 111.5 126.1 133.1 92.6 26.4



Total carbohydrate (g)



Estimated usual intake 164.8 183.8 209.8 241.9 271.8 310.6 331.3 243.8 48.5



Nonlinear calibration 170.1 181.8 207.6 243.7 275.5 308.3 323.4 243.8 48.5



Regression calibration 202.7 208.8 222.5 242.6 261.4 281.8 291.5 243.8 28.2



Additive calibration 162.6 174.5 201.6 241.5 278.6 318.9 338.2 243.8 55.8



Multiplicative calibration 163.1 175.0 201.9 241.6 278.4 318.4 337.6 243.8 55.5
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ϕ(x) =
 



and
ψ(x) =



If x is chosen as a low intake, ϕ(x) can be interpreted as the
percentage of men among low consumers; in the case of a
high intake value x, ψ(x) represents the percentage of men
among high consumers. Obviously, the corresponding
proportion functions for women are simply the differences
between these values and 100 percent. If the two proportion
functions ϕ(x) and ψ(x) of the calibrated data are similar to
the ones for estimated usual intake, between-group validity
of the calibrated intakes is high. In the opposite case, the
calibration method fails to rank men and women correctly.



The effect of calibration on the mixture of groups in a
pooled data analysis was illustrated for total protein intake
(figures 1 and 2). In figure 1, the proportion ϕ(x) of men
among study participants whose total protein intake was less
than x was given for varying threshold value x. The propor-
tion of men increased from 0 percent to 55 percent when the
upper limit of usual protein intake was increased from 55 g/
day to 100 g/day. Obviously, the proportion functions of
usual and nonlinearly calibrated intake were very close,
reflecting a similar mixture of groups in the ordered sample.
In contrast to the nonlinear method, the proportion function
for linear regression remained equal to zero up to an intake
of 72 g/day and was steeper in the narrow interval from 75 g/
day to 85 g/day. Consequently, the data for both genders
were stronger separated by linear regression than they should
have been. On the other hand, additive and multiplicative
calibration diluted the separation of genders by protein
intake. The same effect can be seen in figure 2 by consid-



TABLE 4.   Comparison of usual intake and different calibration methods applied to macronutrient intake 
obtained by FFQ* for 59 women in the European Prospective Investigation into Cancer and Nutrition–Potsdam 
validation study, 1995–1996†



* FFQ, food frequency questionnaire.
† Twelve repeated 24-hour recalls were used as reference measurements and to estimate the usual dietary intake



distribution.



Nutrient and calibration method
Percentile Arithmetic 



mean
Standard 
deviation5 10 25 50 75 90 95



Energy (MJ)



Estimated usual intake 5.07 5.79 6.39 7.15 7.98 8.78 9.95 7.23 1.28



Nonlinear calibration 5.28 5.47 6.48 7.05 7.88 9.11 9.34 7.23 1.28



Regression calibration 5.96 6.08 6.71 7.08 7.65 8.52 8.68 7.23 0.87



Additive calibration 4.39 4.65 6.07 6.90 8.17 10.12 10.47 7.23 1.94



Multiplicative calibration 4.67 4.90 6.18 6.93 8.08 9.83 10.15 7.23 1.75



Total protein (g)



Estimated usual intake 45.7 49.1 54.2 61.2 69.5 73.3 79.0 61.6 10.0



Nonlinear calibration 42.5 45.4 56.2 61.5 68.5 75.9 79.4 61.6 10.0



Regression calibration 54.5 55.0 57.9 60.1 64.3 70.9 75.0 61.6 5.7



Additive calibration 38.7 40.3 49.8 56.9 70.5 91.5 104.6 61.6 18.2



Multiplicative calibration 40.3 41.8 50.6 57.3 69.9 89.5 101.7 61.6 16.9



Total fat (g)



Estimated usual intake 39.9 45.9 54.5 63.8 72.5 84.2 102.5 65.0 16.2



Nonlinear calibration 43.7 46.7 52.9 62.2 75.0 87.5 99.5 65.0 16.2



Regression calibration 48.5 51.3 56.7 64.0 72.7 80.3 86.9 65.0 11.1



Additive calibration 34.4 39.7 49.6 63.1 79.3 93.4 105.7 65.0 20.6



Multiplicative calibration 34.8 40.0 49.8 63.1 79.1 93.1 105.2 65.0 20.4



Total carbohydrate (g)



Estimated usual intake 145.2 166.0 176.9 199.8 232.4 250.2 274.9 204.3 38.6



Nonlinear calibration 135.1 146.6 182.1 203.4 228.1 257.8 266.9 204.3 38.6



Regression calibration 160.6 167.4 189.3 203.0 219.5 240.1 246.5 204.3 25.5



Additive calibration 108.2 123.1 171.3 201.4 237.7 283.0 297.1 204.3 56.2



Multiplicative calibration 116.3 129.9 174.1 201.7 234.9 276.4 289.3 204.3 51.4



Number of men with intake less than x
Number of men and women with intake less than x
--------------------------------------------------------------------------------------------------------------------------100%



Number of men with intake greater than x
Number of men and women with intake greater than x
---------------------------------------------------------------------------------------------------------------------------------100%.
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ering the percentage of men among individuals whose
protein intake was above a specified threshold x.



The nonlinear calibration method was the only one that
assigned rankings for both genders similar to those expected
for usual intake. This property of achieving high between-
group validity is important if pooled calibrated intake data
will be categorized later. For example, consider categoriza-
tion of protein intake by tertiles. The two cutpoints defining
the three categories are about 64 g/day and 82 g/day for all
pooled data sets. Regarding figure 1, the first category based
on nonlinearly calibrated data consists of 12 percent men and
88 percent women, which corresponds to the proportions for
usual intake. However, after additive or multiplicative cali-
bration, the percentage of men in the first category is greater



than 20 percent, whereas, after regression calibration, no
men belong to the first category. Similar discrepancies occur
in the third category characterized by intakes of more than 82
g/day. Figure 2 shows that the proportion of men among
high-protein consumers was markedly too low if additive or
multiplicative calibration was applied and was too high for
linear regression calibration.



DISCUSSION



To increase the chances of detecting significant relations
between dietary intake and disease risk, study populations
should be large and heterogeneous enough to ensure high
interindividual variation in habitual dietary intake. In the last



FIGURE 1. Proportion function ϕ(x), defined as the percentage of men among individuals whose total protein intake (g/day) is below a threshold
value x: comparison of calibration methods in the European Prospective Investigation into Cancer and Nutrition–Potsdam validation study, Germany,
1995–1996.



FIGURE 2. Proportion function ψ(x), defined as the percentage of men among individuals whose total protein intake (g/day) is above a thresh-
old value x: comparison of calibration methods in the European Prospective Investigation into Cancer and Nutrition–Potsdam validation study,
Germany, 1995–1996.
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few years, this knowledge has stimulated researchers to
carry out classic meta-analyses based on several published
and aggregate data (20–24), to pool individual data from
cohort studies in different countries (25–27), and to conduct
multicenter and multiethnic studies (28–31). All of these
complex studies start from the common supposition that
dietary intake measurements labeled the same in all
substudies and centers reflect the same exposure variable
and, therefore, that intake data as well as relative risk esti-
mates are directly comparable and can be combined.
However, this supposition is not realistic, especially if
different FFQs are used in substudies or centers. Therefore,
efforts to standardize dietary intake measurements should
precede statistical analyses of composed study populations.



In this paper, we described and applied a standardization
procedure based on nonlinear calibration. The proposed
method is characterized by three features. Firstly, it is aimed at
usual intake rather than short-term intake directly assessed by
the reference measurements. This focus on usual intake is rele-
vant for applications in nutritional epidemiology because long-
term habitual dietary intake is the primary exposure of interest.
The nonlinear, multistep procedure enables us to eliminate the
annoying intraindividual variation in the reference measure-
ments and to synchronize the intake data obtained by using
both assessment methods. Secondly, the calibration procedure
yields an approximation of the whole usual intake distribution,
not of the mean value only. In contrast to all linear calibration
methods, there is no common correction factor for low,
medium, and high reported intake. Rather, a flexible correction
function ensures a good overall fit of the distribution and a
simultaneous treatment of over- and underestimation depen-
dent on the reported intake. Thirdly, the method handles
different grades of nonnormality of the intake data. Thus, it can
also be applied in cases of highly skewed reference measure-
ments, an often-occurring phenomenon in nutrition.



In a complex study, standardization of dietary intake
requires separate calibration of centers, groups, or substudies.
The chosen calibration method should maintain the within-
center validity and establish a high between-center validity of
the assessment method. If validity is interpreted as the capa-
bility to rank subjects correctly, within-center validity can be
maintained by using a strictly monotonic-increasing calibra-
tion function at each center. Here, the Spearman correlation
coefficient between reference measurements and FFQ after
calibration is equal to the one determined before. None of the
calibration methods evaluated in this paper affects within-
center validity because they do not change the ranking of
subjects within centers. However, they clearly differ in their
capability to reach a high between-center validity. The empir-
ical results presented in this paper demonstrate that only the
described nonlinear method can rank intakes from different
centers similar to the expected ranking of usual intake.



It is well known that linear regression calibration in a one-
center epidemiologic study can be performed either before or
after relative risks are estimated. The two approaches, some-
times referred to as the imputation and risk correction methods,
yield the same final estimates (9). In multicenter studies, this
property of linear regression calibration does not hold
anywhere, however. Thus, we must decide at which point data
should be calibrated. From the theoretical point of view, cali-



bration is a data processing step, and risk estimation is part of
statistical analysis that requires processed data; consequently,
relative risk estimates should already be based on calibrated
data so that later correction is not necessary. Since the bias of
the assessment method chosen for a multicenter study depends
on the center, calibration must be performed in each center
separately before data are pooled. Thus, relative risks should be
estimated by using pooled calibrated data. Doing so ensures
that the often-criticized overall measurers of meta-analysis are
not needed.



The proposed nonlinear calibration method requires
repeated reference measurements. Repetitions are necessary
to obtain an estimate of intraindividual variance, which acts
as a connecting link between the observed distribution of
reference measurements and the usual intake distribution.
Without knowledge of intraindividual variation, shrinkage
of the individual means to the grand mean on the normal
scale cannot be quantified. Other assumptions concerning
the reference measurements tacitly made in this paper, such
as equal intraindividual variances and nonexistence of
nuisance effects, can be avoided by performing initial data
adjustments well known in the estimation theory of usual
intake distributions (12–14). However, to apply the proposed
calibration method, one supposition should always be
fulfilled: The subjects selected for reference measurements
must be representative of the study population. A random
selection procedure and a sufficiently large number of
selected subjects should ensure that the usual intake distribu-
tions of study population and subgroup do not differ greatly.



Nonlinear calibration is not only a standardization procedure
but also a method to improve the accuracy of FFQs, supposing
that reference measurements are more accurate and reliable.
The reference methods commonly used are 24-hour recalls and
food records, although in the last few years there has been
broad discussion about biomarkers being the preferred refer-
ence method. Because accuracy of the calibrated FFQ strongly
depends on the accuracy of the reference method, the bias of
reference measurements is the crucial issue, and a permanent
search for better reference methods is necessary. The proposed
nonlinear calibration procedure should be applied only if well-
accepted reference measurements are available.
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APPENDIX



Formula for Back-Transformation



Let t be any value in the transformed scale. Since t was
measured with an error ε, the inverse function g–1 of the Box-
Cox transformation (16) must be applied to the term t + ε.
Subsequent integration over the error distribution yields the
general formula



                                               (8)



for the back-transformation. Here, ϕ is the density of the
normal distribution with zero mean and variance . In
the special case g(R) = ln(R + ω), we obtain the well-
known result



                             .                   (9)



Now let the inverse power p = τ–1 of the transformation
function g be a positive integer. Then, the back-transforma-
tion can be calculated by using the binomial formula



  (10)



where x!!  denotes the product of all uneven integers from 1
to x with the exception of (–1)!!  = 1.
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